import gradio as gr import numpy as np from PIL import Image import cv2 from moviepy.editor import VideoFileClip import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from diffusers.utils import export_to_video SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/fffiloni/zeroscope-XL](https://huggingface.co/spaces/fffiloni/zeroscope-XL)' pipe_xl = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/17") pipe_xl.vae.enable_slicing() pipe_xl.scheduler = DPMSolverMultistepScheduler.from_config(pipe_xl.scheduler.config) pipe_xl.enable_model_cpu_offload() pipe_xl.to("cuda") def convert_mp4_to_frames(video_path, duration=3): # Read the video file video = cv2.VideoCapture(video_path) # Get the frames per second (fps) of the video fps = video.get(cv2.CAP_PROP_FPS) # Calculate the number of frames to extract num_frames = int(fps * duration) frames = [] frame_count = 0 # Iterate through each frame while True: # Read a frame ret, frame = video.read() # If the frame was not successfully read or we have reached the desired duration, break the loop if not ret or frame_count == num_frames: break # Convert BGR to RGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Append the frame to the list of frames frames.append(frame) frame_count += 1 # Release the video object video.release() # Convert the list of frames to a numpy array frames = np.array(frames) return frames def infer(prompt, video_in, denoise_strength, duration, secret_token: str = '') -> str: if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') negative_prompt = "text, watermark, copyright, blurry, cropped, noisy, pixelated, nsfw" # we cannot go beyond 3 seconds on the large A10G video = convert_mp4_to_frames(video_in, min(duration, 3)) video_resized = [Image.fromarray(frame).resize((1024, 576)) for frame in video] video_frames = pipe_xl(prompt, negative_prompt=negative_prompt, video=video_resized, strength=denoise_strength).frames video_path = export_to_video(video_frames, output_video_path="xl_result.mp4") return "xl_result.mp4", gr.Group.update(visible=True) with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) with gr.Column(): secret_token = gr.Text(label='Secret Token', max_lines=1) video_in = gr.Video(type="numpy", source="upload") prompt_in = gr.Textbox(label="Prompt", elem_id="prompt-in") denoise_strength = gr.Slider(label="Denoise strength", minimum=0.6, maximum=0.9, step=0.01, value=0.66) duration = gr.Slider(label="Duration", minimum=0.5, maximum=3, step=0.5, value=3) #inference_steps = gr.Slider(label="Inference Steps", minimum=7, maximum=100, step=1, value=40, interactive=False) submit_btn = gr.Button("Submit") video_result = gr.Video(label="Video Output", elem_id="video-output") submit_btn.click(fn=infer, inputs=[prompt_in, video_in, denoise_strength, secret_token], outputs=[video_result], api_name="zero_xl" ) demo.queue(max_size=6).launch()