#!/usr/bin/env python import os import gradio as gr import numpy as np from PIL import base64 import io import torch from diffusers import LCMScheduler, AutoPipelineForText2Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') MODEL_ID = "segmind/SSD-1B" ADAPTER_ID = "latent-consistency/lcm-lora-ssd-1b" device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): pipe = AutoPipelineForText2Image.from_pretrained(MODEL_ID, torch_dtype=torch.float16, variant="fp16") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") # load and fuse pipe.load_lora_weights(ADAPTER_ID) pipe.fuse_lora() else: pipe = None def generate(prompt: str, negative_prompt: str = '', seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 0.0, num_inference_steps: int = 4, secret_token: str = '') -> PIL.Image.Image: if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') generator = torch.Generator().manual_seed(seed) image = pipe(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type='pil').images[0] # Convert PIL image to a byte stream buffered = io.BytesIO() image.save(buffered, format="PNG") # Encode to base64 img_str = base64.b64encode(buffered.getvalue()).decode() return img_str with gr.Blocks() as demo: gr.HTML("""
This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.
It is not meant to be directly used through a user interface, but using code and an access key.