#!/usr/bin/env python import os import gradio as gr import numpy as np from PIL import base64 import io import torch from diffusers import LCMScheduler, AutoPipelineForText2Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') MODEL_ID = "segmind/SSD-1B" ADAPTER_ID = "latent-consistency/lcm-lora-ssd-1b" device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): pipe = AutoPipelineForText2Image.from_pretrained(MODEL_ID, torch_dtype=torch.float16, variant="fp16") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") # load and fuse pipe.load_lora_weights(ADAPTER_ID) pipe.fuse_lora() else: pipe = None def generate(prompt: str, negative_prompt: str = '', seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 0.0, num_inference_steps: int = 4, secret_token: str = '') -> PIL.Image.Image: if secret_token != SECRET_TOKEN: raise gr.Error( f'Invalid secret token. Please fork the original space if you want to use it for yourself.') generator = torch.Generator().manual_seed(seed) image = pipe(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type='pil').images[0] # Convert PIL image to a byte stream buffered = io.BytesIO() image.save(buffered, format="PNG") # Encode to base64 img_str = base64.b64encode(buffered.getvalue()).decode() return img_str with gr.Blocks() as demo: gr.HTML("""

This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.

It is not meant to be directly used through a user interface, but using code and an access key.

""") secret_token = gr.Text( label='Secret Token', max_lines=1, placeholder='Enter your secret token', ) prompt = gr.Text( label='Prompt', show_label=False, max_lines=1, placeholder='Enter your prompt', container=False, ) result = gr.Image(label='Result', show_label=False, type="base64") negative_prompt = gr.Text( label='Negative prompt', max_lines=1, placeholder='Enter a negative prompt', visible=True, ) seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) width = gr.Slider( label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) guidance_scale = gr.Slider( label='Guidance scale', minimum=0, maximum=2, step=0.1, value=0.0) num_inference_steps = gr.Slider( label='Number of inference steps', minimum=1, maximum=8, step=1, value=4) inputs = [ prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token, ] prompt.submit( fn=generate, inputs=inputs, outputs=result, api_name='run', ) demo.queue(max_size=32).launch()