jbilcke-hf HF Staff commited on
Commit
bdf084e
·
1 Parent(s): 41a8716

Wan 1.3B 1080p

Browse files
docs/gradio/Progress.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Progress
2
+ ========
3
+
4
+ gradio.Progress(···)
5
+
6
+ ### Description[![](https://raw.githubusercontent.com/gradio-app/gradio/main/js/_website/src/lib/assets/img/anchor.svg)](#description)
7
+
8
+ The Progress class provides a custom progress tracker that is used in a function signature. To attach a Progress tracker to a function, simply add a parameter right after the input parameters that has a default value set to a `gradio.Progress()` instance. The Progress tracker can then be updated in the function by calling the Progress object or using the `tqdm` method on an Iterable.
9
+ --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
10
+
11
+ ### Example Usage[![](https://raw.githubusercontent.com/gradio-app/gradio/main/js/_website/src/lib/assets/img/anchor.svg)](#example-usage)
12
+
13
+ import gradio as gr
14
+ import time
15
+ def my_function(x, progress=gr.Progress()):
16
+ progress(0, desc="Starting...")
17
+ time.sleep(1)
18
+ for i in progress.tqdm(range(100)):
19
+ time.sleep(0.1)
20
+ return x
21
+ gr.Interface(my_function, gr.Textbox(), gr.Textbox()).queue().launch()
22
+
23
+ ### Initialization[![](https://raw.githubusercontent.com/gradio-app/gradio/main/js/_website/src/lib/assets/img/anchor.svg)](#initialization)
24
+
25
+ Parameters ▼
26
+
27
+ [🔗](#param-progress-track-tqdm)
28
+
29
+ track_tqdm: bool
30
+
31
+ default `= False`
32
+
33
+ If True, the Progress object will track any tqdm.tqdm iterations with the tqdm library in the function.
34
+
35
+ ### Methods[![](https://raw.githubusercontent.com/gradio-app/gradio/main/js/_website/src/lib/assets/img/anchor.svg)](#methods)
36
+
37
+ ### \_\_call\_\_ [![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20(Commercial%20License)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e)](#progress-__call__)
38
+
39
+ gradio.Progress.__call__(progress, ···)
40
+
41
+ #### Description [![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20(Commercial%20License)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e)](#__call__-description)
42
+
43
+ Updates progress tracker with progress and message text.
44
+
45
+ Parameters ▼
46
+
47
+ [🔗](#param-__call__-progress)
48
+
49
+ progress: float | tuple[int, int | None] | None
50
+
51
+ If float, should be between 0 and 1 representing completion. If Tuple, first number represents steps completed, and second value represents total steps or None if unknown. If None, hides progress bar.
52
+
53
+ [🔗](#param-__call__-desc)
54
+
55
+ desc: str | None
56
+
57
+ default `= None`
58
+
59
+ description to display.
60
+
61
+ [🔗](#param-__call__-total)
62
+
63
+ total: int | float | None
64
+
65
+ default `= None`
66
+
67
+ estimated total number of steps.
68
+
69
+ [🔗](#param-__call__-unit)
70
+
71
+ unit: str
72
+
73
+ default `= "steps"`
74
+
75
+ unit of iterations.
76
+
77
+ ### tqdm [![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20(Commercial%20License)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e)](#progress-tqdm)
78
+
79
+ gradio.Progress.tqdm(iterable, ···)
80
+
81
+ #### Description [![](data:image/svg+xml,%3csvg%20xmlns='http://www.w3.org/2000/svg'%20fill='%23808080'%20viewBox='0%200%20640%20512'%3e%3c!--!%20Font%20Awesome%20Pro%206.0.0%20by%20@fontawesome%20-%20https://fontawesome.com%20License%20-%20https://fontawesome.com/license%20(Commercial%20License)%20Copyright%202022%20Fonticons,%20Inc.%20--%3e%3cpath%20d='M172.5%20131.1C228.1%2075.51%20320.5%2075.51%20376.1%20131.1C426.1%20181.1%20433.5%20260.8%20392.4%20318.3L391.3%20319.9C381%20334.2%20361%20337.6%20346.7%20327.3C332.3%20317%20328.9%20297%20339.2%20282.7L340.3%20281.1C363.2%20249%20359.6%20205.1%20331.7%20177.2C300.3%20145.8%20249.2%20145.8%20217.7%20177.2L105.5%20289.5C73.99%20320.1%2073.99%20372%20105.5%20403.5C133.3%20431.4%20177.3%20435%20209.3%20412.1L210.9%20410.1C225.3%20400.7%20245.3%20404%20255.5%20418.4C265.8%20432.8%20262.5%20452.8%20248.1%20463.1L246.5%20464.2C188.1%20505.3%20110.2%20498.7%2060.21%20448.8C3.741%20392.3%203.741%20300.7%2060.21%20244.3L172.5%20131.1zM467.5%20380C411%20436.5%20319.5%20436.5%20263%20380C213%20330%20206.5%20251.2%20247.6%20193.7L248.7%20192.1C258.1%20177.8%20278.1%20174.4%20293.3%20184.7C307.7%20194.1%20311.1%20214.1%20300.8%20229.3L299.7%20230.9C276.8%20262.1%20280.4%20306.9%20308.3%20334.8C339.7%20366.2%20390.8%20366.2%20422.3%20334.8L534.5%20222.5C566%20191%20566%20139.1%20534.5%20108.5C506.7%2080.63%20462.7%2076.99%20430.7%2099.9L429.1%20101C414.7%20111.3%20394.7%20107.1%20384.5%2093.58C374.2%2079.2%20377.5%2059.21%20391.9%2048.94L393.5%2047.82C451%206.731%20529.8%2013.25%20579.8%2063.24C636.3%20119.7%20636.3%20211.3%20579.8%20267.7L467.5%20380z'/%3e%3c/svg%3e)](#tqdm-description)
82
+
83
+ Attaches progress tracker to iterable, like tqdm.
84
+
85
+ Parameters ▼
86
+
87
+ [🔗](#param-tqdm-iterable)
88
+
89
+ iterable: Iterable | None
90
+
91
+ iterable to attach progress tracker to.
92
+
93
+ [🔗](#param-tqdm-desc)
94
+
95
+ desc: str | None
96
+
97
+ default `= None`
98
+
99
+ description to display.
100
+
101
+ [🔗](#param-tqdm-total)
102
+
103
+ total: int | float | None
104
+
105
+ default `= None`
106
+
107
+ estimated total number of steps.
108
+
109
+ [🔗](#param-tqdm-unit)
110
+
111
+ unit: str
112
+
113
+ default `= "steps"`
114
+
115
+ unit of iterations.
vms/config.py CHANGED
@@ -318,17 +318,17 @@ SD_16_9_H = 576 # 8*72
318
  SD_9_16_W = 576 # 8*72
319
  SD_9_16_H = 1024 # 8*128
320
 
321
- # MD (720p)
322
- MD_16_9_W = 1280 # 8*160
323
- MD_16_9_H = 720 # 8*90
324
- MD_9_16_W = 720 # 8*90
325
- MD_9_16_H = 1280 # 8*160
326
-
327
- # HD (1080p)
328
- HD_16_9_W = 1920 # 8*240
329
- HD_16_9_H = 1080 # 8*135
330
- HD_9_16_W = 1080 # 8*135
331
- HD_9_16_H = 1920 # 8*240
332
 
333
  # QHD (2K)
334
  QHD_16_9_W = 2160 # 8*270
@@ -383,6 +383,11 @@ NB_FRAMES_353 = 8 * 44 + 1 # 352 + 1
383
  NB_FRAMES_369 = 8 * 46 + 1 # 368 + 1
384
  NB_FRAMES_385 = 8 * 48 + 1 # 384 + 1
385
  NB_FRAMES_401 = 8 * 50 + 1 # 400 + 1
 
 
 
 
 
386
 
387
  # ------ HOW BUCKETS WORK:----------
388
  # Basically, to train or fine-tune a video model with Finetrainers, we need to specify all the possible accepted videos lengths AND size combinations (buckets), in the form: (BUCKET_CONFIGURATION_1, BUCKET_CONFIGURATION_2, ..., BUCKET_CONFIGURATION_N)
@@ -424,39 +429,111 @@ SD_TRAINING_BUCKETS = [
424
  (NB_FRAMES_257, SD_16_9_H, SD_16_9_W), # 256 + 1
425
  (NB_FRAMES_265, SD_16_9_H, SD_16_9_W), # 264 + 1
426
  (NB_FRAMES_273, SD_16_9_H, SD_16_9_W), # 272 + 1
 
 
 
 
 
 
 
 
 
 
 
 
 
427
  ]
428
 
429
  # For 1280x720 images and videos (from 1 frame up to 272)
430
- MD_TRAINING_BUCKETS = [
431
- (NB_FRAMES_1, MD_16_9_H, MD_16_9_W), # 1
432
- (NB_FRAMES_9, MD_16_9_H, MD_16_9_W), # 8 + 1
433
- (NB_FRAMES_17, MD_16_9_H, MD_16_9_W), # 16 + 1
434
- (NB_FRAMES_33, MD_16_9_H, MD_16_9_W), # 32 + 1
435
- (NB_FRAMES_49, MD_16_9_H, MD_16_9_W), # 48 + 1
436
- (NB_FRAMES_65, MD_16_9_H, MD_16_9_W), # 64 + 1
437
- (NB_FRAMES_73, MD_16_9_H, MD_16_9_W), # 72 + 1
438
- (NB_FRAMES_81, MD_16_9_H, MD_16_9_W), # 80 + 1
439
- (NB_FRAMES_89, MD_16_9_H, MD_16_9_W), # 88 + 1
440
- (NB_FRAMES_97, MD_16_9_H, MD_16_9_W), # 96 + 1
441
- (NB_FRAMES_105, MD_16_9_H, MD_16_9_W), # 104 + 1
442
- (NB_FRAMES_113, MD_16_9_H, MD_16_9_W), # 112 + 1
443
- (NB_FRAMES_121, MD_16_9_H, MD_16_9_W), # 121 + 1
444
- (NB_FRAMES_129, MD_16_9_H, MD_16_9_W), # 128 + 1
445
- (NB_FRAMES_137, MD_16_9_H, MD_16_9_W), # 136 + 1
446
- (NB_FRAMES_145, MD_16_9_H, MD_16_9_W), # 144 + 1
447
- (NB_FRAMES_161, MD_16_9_H, MD_16_9_W), # 160 + 1
448
- (NB_FRAMES_177, MD_16_9_H, MD_16_9_W), # 176 + 1
449
- (NB_FRAMES_193, MD_16_9_H, MD_16_9_W), # 192 + 1
450
- (NB_FRAMES_201, MD_16_9_H, MD_16_9_W), # 200 + 1
451
- (NB_FRAMES_209, MD_16_9_H, MD_16_9_W), # 208 + 1
452
- (NB_FRAMES_217, MD_16_9_H, MD_16_9_W), # 216 + 1
453
- (NB_FRAMES_225, MD_16_9_H, MD_16_9_W), # 224 + 1
454
- (NB_FRAMES_233, MD_16_9_H, MD_16_9_W), # 232 + 1
455
- (NB_FRAMES_241, MD_16_9_H, MD_16_9_W), # 240 + 1
456
- (NB_FRAMES_249, MD_16_9_H, MD_16_9_W), # 248 + 1
457
- (NB_FRAMES_257, MD_16_9_H, MD_16_9_W), # 256 + 1
458
- (NB_FRAMES_265, MD_16_9_H, MD_16_9_W), # 264 + 1
459
- (NB_FRAMES_273, MD_16_9_H, MD_16_9_W), # 272 + 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460
  ]
461
 
462
 
@@ -466,7 +543,8 @@ MD_TRAINING_BUCKETS = [
466
  # Resolution buckets for different models
467
  RESOLUTION_OPTIONS = {
468
  "SD (1024x576)": "SD_TRAINING_BUCKETS",
469
- "HD (1280x720)": "MD_TRAINING_BUCKETS"
 
470
  }
471
 
472
  # Default parameters for Hunyuan Video
 
318
  SD_9_16_W = 576 # 8*72
319
  SD_9_16_H = 1024 # 8*128
320
 
321
+ # HD (720p)
322
+ HD_16_9_W = 1280 # 8*160
323
+ HD_16_9_H = 720 # 8*90
324
+ HD_9_16_W = 720 # 8*90
325
+ HD_9_16_H = 1280 # 8*160
326
+
327
+ # FHD (1080p)
328
+ FHD_16_9_W = 1920 # 8*240
329
+ FHD_16_9_H = 1080 # 8*135
330
+ FHD_9_16_W = 1080 # 8*135
331
+ FHD_9_16_H = 1920 # 8*240
332
 
333
  # QHD (2K)
334
  QHD_16_9_W = 2160 # 8*270
 
383
  NB_FRAMES_369 = 8 * 46 + 1 # 368 + 1
384
  NB_FRAMES_385 = 8 * 48 + 1 # 384 + 1
385
  NB_FRAMES_401 = 8 * 50 + 1 # 400 + 1
386
+ NB_FRAMES_417 = 8 * 52 + 1 # 416 + 1
387
+ NB_FRAMES_433 = 8 * 54 + 1 # 432 + 1
388
+ NB_FRAMES_449 = 8 * 56 + 1 # 448 + 1
389
+ NB_FRAMES_465 = 8 * 58 + 1 # 464 + 1
390
+ NB_FRAMES_481 = 8 * 60 + 1 # 480 + 1
391
 
392
  # ------ HOW BUCKETS WORK:----------
393
  # Basically, to train or fine-tune a video model with Finetrainers, we need to specify all the possible accepted videos lengths AND size combinations (buckets), in the form: (BUCKET_CONFIGURATION_1, BUCKET_CONFIGURATION_2, ..., BUCKET_CONFIGURATION_N)
 
429
  (NB_FRAMES_257, SD_16_9_H, SD_16_9_W), # 256 + 1
430
  (NB_FRAMES_265, SD_16_9_H, SD_16_9_W), # 264 + 1
431
  (NB_FRAMES_273, SD_16_9_H, SD_16_9_W), # 272 + 1
432
+ (NB_FRAMES_289, SD_16_9_H, SD_16_9_W), # 288 + 1
433
+ (NB_FRAMES_305, SD_16_9_H, SD_16_9_W), # 304 + 1
434
+ (NB_FRAMES_321, SD_16_9_H, SD_16_9_W), # 320 + 1
435
+ (NB_FRAMES_337, SD_16_9_H, SD_16_9_W), # 336 + 1
436
+ (NB_FRAMES_353, SD_16_9_H, SD_16_9_W), # 352 + 1
437
+ (NB_FRAMES_369, SD_16_9_H, SD_16_9_W), # 368 + 1
438
+ (NB_FRAMES_385, SD_16_9_H, SD_16_9_W), # 384 + 1
439
+ (NB_FRAMES_401, SD_16_9_H, SD_16_9_W), # 400 + 1
440
+ (NB_FRAMES_417, SD_16_9_H, SD_16_9_W), # 416 + 1
441
+ (NB_FRAMES_433, SD_16_9_H, SD_16_9_W), # 432 + 1
442
+ (NB_FRAMES_449, SD_16_9_H, SD_16_9_W), # 448 + 1
443
+ (NB_FRAMES_465, SD_16_9_H, SD_16_9_W), # 464 + 1
444
+ (NB_FRAMES_481, SD_16_9_H, SD_16_9_W), # 480 + 1
445
  ]
446
 
447
  # For 1280x720 images and videos (from 1 frame up to 272)
448
+ HD_TRAINING_BUCKETS = [
449
+ (NB_FRAMES_1, HD_16_9_H, HD_16_9_W), # 1
450
+ (NB_FRAMES_9, HD_16_9_H, HD_16_9_W), # 8 + 1
451
+ (NB_FRAMES_17, HD_16_9_H, HD_16_9_W), # 16 + 1
452
+ (NB_FRAMES_33, HD_16_9_H, HD_16_9_W), # 32 + 1
453
+ (NB_FRAMES_49, HD_16_9_H, HD_16_9_W), # 48 + 1
454
+ (NB_FRAMES_65, HD_16_9_H, HD_16_9_W), # 64 + 1
455
+ (NB_FRAMES_73, HD_16_9_H, HD_16_9_W), # 72 + 1
456
+ (NB_FRAMES_81, HD_16_9_H, HD_16_9_W), # 80 + 1
457
+ (NB_FRAMES_89, HD_16_9_H, HD_16_9_W), # 88 + 1
458
+ (NB_FRAMES_97, HD_16_9_H, HD_16_9_W), # 96 + 1
459
+ (NB_FRAMES_105, HD_16_9_H, HD_16_9_W), # 104 + 1
460
+ (NB_FRAMES_113, HD_16_9_H, HD_16_9_W), # 112 + 1
461
+ (NB_FRAMES_121, HD_16_9_H, HD_16_9_W), # 121 + 1
462
+ (NB_FRAMES_129, HD_16_9_H, HD_16_9_W), # 128 + 1
463
+ (NB_FRAMES_137, HD_16_9_H, HD_16_9_W), # 136 + 1
464
+ (NB_FRAMES_145, HD_16_9_H, HD_16_9_W), # 144 + 1
465
+ (NB_FRAMES_161, HD_16_9_H, HD_16_9_W), # 160 + 1
466
+ (NB_FRAMES_177, HD_16_9_H, HD_16_9_W), # 176 + 1
467
+ (NB_FRAMES_193, HD_16_9_H, HD_16_9_W), # 192 + 1
468
+ (NB_FRAMES_201, HD_16_9_H, HD_16_9_W), # 200 + 1
469
+ (NB_FRAMES_209, HD_16_9_H, HD_16_9_W), # 208 + 1
470
+ (NB_FRAMES_217, HD_16_9_H, HD_16_9_W), # 216 + 1
471
+ (NB_FRAMES_225, HD_16_9_H, HD_16_9_W), # 224 + 1
472
+ (NB_FRAMES_233, HD_16_9_H, HD_16_9_W), # 232 + 1
473
+ (NB_FRAMES_241, HD_16_9_H, HD_16_9_W), # 240 + 1
474
+ (NB_FRAMES_249, HD_16_9_H, HD_16_9_W), # 248 + 1
475
+ (NB_FRAMES_257, HD_16_9_H, HD_16_9_W), # 256 + 1
476
+ (NB_FRAMES_265, HD_16_9_H, HD_16_9_W), # 264 + 1
477
+ (NB_FRAMES_273, HD_16_9_H, HD_16_9_W), # 272 + 1
478
+ (NB_FRAMES_289, HD_16_9_H, HD_16_9_W), # 288 + 1
479
+ (NB_FRAMES_305, HD_16_9_H, HD_16_9_W), # 304 + 1
480
+ (NB_FRAMES_321, HD_16_9_H, HD_16_9_W), # 320 + 1
481
+ (NB_FRAMES_337, HD_16_9_H, HD_16_9_W), # 336 + 1
482
+ (NB_FRAMES_353, HD_16_9_H, HD_16_9_W), # 352 + 1
483
+ (NB_FRAMES_369, HD_16_9_H, HD_16_9_W), # 368 + 1
484
+ (NB_FRAMES_385, HD_16_9_H, HD_16_9_W), # 384 + 1
485
+ (NB_FRAMES_401, HD_16_9_H, HD_16_9_W), # 400 + 1
486
+ (NB_FRAMES_417, HD_16_9_H, HD_16_9_W), # 416 + 1
487
+ (NB_FRAMES_433, HD_16_9_H, HD_16_9_W), # 432 + 1
488
+ (NB_FRAMES_449, HD_16_9_H, HD_16_9_W), # 448 + 1
489
+ (NB_FRAMES_465, HD_16_9_H, HD_16_9_W), # 464 + 1
490
+ (NB_FRAMES_481, HD_16_9_H, HD_16_9_W), # 480 + 1
491
+ ]
492
+
493
+ # For 1920x1080 images and videos (from 1 frame up to 272)
494
+ FHD_TRAINING_BUCKETS = [
495
+ (NB_FRAMES_1, FHD_16_9_H, FHD_16_9_W), # 1
496
+ (NB_FRAMES_9, FHD_16_9_H, FHD_16_9_W), # 8 + 1
497
+ (NB_FRAMES_17, FHD_16_9_H, FHD_16_9_W), # 16 + 1
498
+ (NB_FRAMES_33, FHD_16_9_H, FHD_16_9_W), # 32 + 1
499
+ (NB_FRAMES_49, FHD_16_9_H, FHD_16_9_W), # 48 + 1
500
+ (NB_FRAMES_65, FHD_16_9_H, FHD_16_9_W), # 64 + 1
501
+ (NB_FRAMES_73, FHD_16_9_H, FHD_16_9_W), # 72 + 1
502
+ (NB_FRAMES_81, FHD_16_9_H, FHD_16_9_W), # 80 + 1
503
+ (NB_FRAMES_89, FHD_16_9_H, FHD_16_9_W), # 88 + 1
504
+ (NB_FRAMES_97, FHD_16_9_H, FHD_16_9_W), # 96 + 1
505
+ (NB_FRAMES_105, FHD_16_9_H, FHD_16_9_W), # 104 + 1
506
+ (NB_FRAMES_113, FHD_16_9_H, FHD_16_9_W), # 112 + 1
507
+ (NB_FRAMES_121, FHD_16_9_H, FHD_16_9_W), # 121 + 1
508
+ (NB_FRAMES_129, FHD_16_9_H, FHD_16_9_W), # 128 + 1
509
+ (NB_FRAMES_137, FHD_16_9_H, FHD_16_9_W), # 136 + 1
510
+ (NB_FRAMES_145, FHD_16_9_H, FHD_16_9_W), # 144 + 1
511
+ (NB_FRAMES_161, FHD_16_9_H, FHD_16_9_W), # 160 + 1
512
+ (NB_FRAMES_177, FHD_16_9_H, FHD_16_9_W), # 176 + 1
513
+ (NB_FRAMES_193, FHD_16_9_H, FHD_16_9_W), # 192 + 1
514
+ (NB_FRAMES_201, FHD_16_9_H, FHD_16_9_W), # 200 + 1
515
+ (NB_FRAMES_209, FHD_16_9_H, FHD_16_9_W), # 208 + 1
516
+ (NB_FRAMES_217, FHD_16_9_H, FHD_16_9_W), # 216 + 1
517
+ (NB_FRAMES_225, FHD_16_9_H, FHD_16_9_W), # 224 + 1
518
+ (NB_FRAMES_233, FHD_16_9_H, FHD_16_9_W), # 232 + 1
519
+ (NB_FRAMES_241, FHD_16_9_H, FHD_16_9_W), # 240 + 1
520
+ (NB_FRAMES_249, FHD_16_9_H, FHD_16_9_W), # 248 + 1
521
+ (NB_FRAMES_257, FHD_16_9_H, FHD_16_9_W), # 256 + 1
522
+ (NB_FRAMES_265, FHD_16_9_H, FHD_16_9_W), # 264 + 1
523
+ (NB_FRAMES_273, FHD_16_9_H, FHD_16_9_W), # 272 + 1
524
+ (NB_FRAMES_289, FHD_16_9_H, FHD_16_9_W), # 288 + 1
525
+ (NB_FRAMES_305, FHD_16_9_H, FHD_16_9_W), # 304 + 1
526
+ (NB_FRAMES_321, FHD_16_9_H, FHD_16_9_W), # 320 + 1
527
+ (NB_FRAMES_337, FHD_16_9_H, FHD_16_9_W), # 336 + 1
528
+ (NB_FRAMES_353, FHD_16_9_H, FHD_16_9_W), # 352 + 1
529
+ (NB_FRAMES_369, FHD_16_9_H, FHD_16_9_W), # 368 + 1
530
+ (NB_FRAMES_385, FHD_16_9_H, FHD_16_9_W), # 384 + 1
531
+ (NB_FRAMES_401, FHD_16_9_H, FHD_16_9_W), # 400 + 1
532
+ (NB_FRAMES_417, FHD_16_9_H, FHD_16_9_W), # 416 + 1
533
+ (NB_FRAMES_433, FHD_16_9_H, FHD_16_9_W), # 432 + 1
534
+ (NB_FRAMES_449, FHD_16_9_H, FHD_16_9_W), # 448 + 1
535
+ (NB_FRAMES_465, FHD_16_9_H, FHD_16_9_W), # 464 + 1
536
+ (NB_FRAMES_481, FHD_16_9_H, FHD_16_9_W), # 480 + 1
537
  ]
538
 
539
 
 
543
  # Resolution buckets for different models
544
  RESOLUTION_OPTIONS = {
545
  "SD (1024x576)": "SD_TRAINING_BUCKETS",
546
+ "HD (1280x720)": "HD_TRAINING_BUCKETS",
547
+ "FHD (1920x1080)": "FHD_TRAINING_BUCKETS"
548
  }
549
 
550
  # Default parameters for Hunyuan Video
vms/ui/app_ui.py CHANGED
@@ -9,7 +9,7 @@ from typing import Any, Optional, Dict, List, Union, Tuple
9
 
10
  from vms.config import (
11
  STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
12
- MODEL_TYPES, SD_TRAINING_BUCKETS, MD_TRAINING_BUCKETS, TRAINING_TYPES, MODEL_VERSIONS,
13
  RESOLUTION_OPTIONS,
14
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
15
  DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
 
9
 
10
  from vms.config import (
11
  STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
12
+ MODEL_TYPES, SD_TRAINING_BUCKETS, HD_TRAINING_BUCKETS, FHD_TRAINING_BUCKETS, TRAINING_TYPES, MODEL_VERSIONS,
13
  RESOLUTION_OPTIONS,
14
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
15
  DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
vms/ui/models/tabs/training_tab.py CHANGED
@@ -88,9 +88,8 @@ class TrainingTab(BaseTab):
88
  gr.Markdown(model.model_display_name or "Unknown")
89
 
90
  with gr.Column(scale=2, min_width=20):
91
- progress_text = f"Step {model.current_step}/{model.total_steps}"
92
  gr.Markdown(progress_text)
93
- gr.Progress(value=model.training_progress/100)
94
 
95
  with gr.Column(scale=2, min_width=20):
96
  with gr.Row():
 
88
  gr.Markdown(model.model_display_name or "Unknown")
89
 
90
  with gr.Column(scale=2, min_width=20):
91
+ progress_text = f"Step {model.current_step}/{model.total_steps} ({model.training_progress:.1f}%)"
92
  gr.Markdown(progress_text)
 
93
 
94
  with gr.Column(scale=2, min_width=20):
95
  with gr.Row():
vms/ui/project/services/training.py CHANGED
@@ -22,7 +22,7 @@ from typing import Any, Optional, Dict, List, Union, Tuple
22
  from huggingface_hub import upload_folder, create_repo
23
 
24
  from vms.config import (
25
- TrainingConfig, RESOLUTION_OPTIONS, SD_TRAINING_BUCKETS, MD_TRAINING_BUCKETS,
26
  STORAGE_PATH, HF_API_TOKEN,
27
  MODEL_TYPES, TRAINING_TYPES, MODEL_VERSIONS,
28
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
@@ -659,8 +659,10 @@ class TrainingService:
659
  # Determine which buckets to use based on the selected resolution
660
  if training_buckets_name == "SD_TRAINING_BUCKETS":
661
  training_buckets = SD_TRAINING_BUCKETS
662
- elif training_buckets_name == "MD_TRAINING_BUCKETS":
663
- training_buckets = MD_TRAINING_BUCKETS
 
 
664
  else:
665
  training_buckets = SD_TRAINING_BUCKETS # Default fallback
666
 
 
22
  from huggingface_hub import upload_folder, create_repo
23
 
24
  from vms.config import (
25
+ TrainingConfig, RESOLUTION_OPTIONS, SD_TRAINING_BUCKETS, HD_TRAINING_BUCKETS, FHD_TRAINING_BUCKETS,
26
  STORAGE_PATH, HF_API_TOKEN,
27
  MODEL_TYPES, TRAINING_TYPES, MODEL_VERSIONS,
28
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
 
659
  # Determine which buckets to use based on the selected resolution
660
  if training_buckets_name == "SD_TRAINING_BUCKETS":
661
  training_buckets = SD_TRAINING_BUCKETS
662
+ elif training_buckets_name == "HD_TRAINING_BUCKETS":
663
+ training_buckets = HD_TRAINING_BUCKETS
664
+ elif training_buckets_name == "FHD_TRAINING_BUCKETS":
665
+ training_buckets = FHD_TRAINING_BUCKETS
666
  else:
667
  training_buckets = SD_TRAINING_BUCKETS # Default fallback
668
 
vms/ui/project/tabs/train_tab.py CHANGED
@@ -13,7 +13,7 @@ from pathlib import Path
13
  from vms.utils import BaseTab
14
  from vms.config import (
15
  ASK_USER_TO_DUPLICATE_SPACE,
16
- SD_TRAINING_BUCKETS, MD_TRAINING_BUCKETS,
17
  RESOLUTION_OPTIONS,
18
  TRAINING_TYPES, MODEL_TYPES, MODEL_VERSIONS,
19
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
 
13
  from vms.utils import BaseTab
14
  from vms.config import (
15
  ASK_USER_TO_DUPLICATE_SPACE,
16
+ SD_TRAINING_BUCKETS, HD_TRAINING_BUCKETS, FHD_TRAINING_BUCKETS,
17
  RESOLUTION_OPTIONS,
18
  TRAINING_TYPES, MODEL_TYPES, MODEL_VERSIONS,
19
  DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,