Spaces:
Running
Running
Commit
·
873d3e4
1
Parent(s):
5719070
up
Browse files
docs/torch/README_for_torchcodec.md
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[**Installation**](#installing-torchcodec) | [**Simple Example**](#using-torchcodec) | [**Detailed Example**](https://pytorch.org/torchcodec/stable/generated_examples/) | [**Documentation**](https://pytorch.org/torchcodec) | [**Contributing**](CONTRIBUTING.md) | [**License**](#license)
|
2 |
+
|
3 |
+
# TorchCodec
|
4 |
+
|
5 |
+
TorchCodec is a Python library for decoding video and audio data into PyTorch
|
6 |
+
tensors, on CPU and CUDA GPU. It also supports audio encoding, and video
|
7 |
+
encoding will come soon! It aims to be fast, easy to use, and well integrated
|
8 |
+
into the PyTorch ecosystem. If you want to use PyTorch to train ML models on
|
9 |
+
videos and audio, TorchCodec is how you turn these into data.
|
10 |
+
|
11 |
+
We achieve these capabilities through:
|
12 |
+
|
13 |
+
* Pythonic APIs that mirror Python and PyTorch conventions.
|
14 |
+
* Relying on [FFmpeg](https://www.ffmpeg.org/) to do the decoding and encoding.
|
15 |
+
TorchCodec uses the version of FFmpeg you already have installed. FFmpeg is a
|
16 |
+
mature library with broad coverage available on most systems. It is, however,
|
17 |
+
not easy to use. TorchCodec abstracts FFmpeg's complexity to ensure it is used
|
18 |
+
correctly and efficiently.
|
19 |
+
* Returning data as PyTorch tensors, ready to be fed into PyTorch transforms
|
20 |
+
or used directly to train models.
|
21 |
+
|
22 |
+
## Using TorchCodec
|
23 |
+
|
24 |
+
Here's a condensed summary of what you can do with TorchCodec. For more detailed
|
25 |
+
examples, [check out our
|
26 |
+
documentation](https://pytorch.org/torchcodec/stable/generated_examples/)!
|
27 |
+
|
28 |
+
#### Decoding
|
29 |
+
|
30 |
+
```python
|
31 |
+
from torchcodec.decoders import VideoDecoder
|
32 |
+
|
33 |
+
device = "cpu" # or e.g. "cuda" !
|
34 |
+
decoder = VideoDecoder("path/to/video.mp4", device=device)
|
35 |
+
|
36 |
+
decoder.metadata
|
37 |
+
# VideoStreamMetadata:
|
38 |
+
# num_frames: 250
|
39 |
+
# duration_seconds: 10.0
|
40 |
+
# bit_rate: 31315.0
|
41 |
+
# codec: h264
|
42 |
+
# average_fps: 25.0
|
43 |
+
# ... (truncated output)
|
44 |
+
|
45 |
+
# Simple Indexing API
|
46 |
+
decoder[0] # uint8 tensor of shape [C, H, W]
|
47 |
+
decoder[0 : -1 : 20] # uint8 stacked tensor of shape [N, C, H, W]
|
48 |
+
|
49 |
+
# Indexing, with PTS and duration info:
|
50 |
+
decoder.get_frames_at(indices=[2, 100])
|
51 |
+
# FrameBatch:
|
52 |
+
# data (shape): torch.Size([2, 3, 270, 480])
|
53 |
+
# pts_seconds: tensor([0.0667, 3.3367], dtype=torch.float64)
|
54 |
+
# duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
|
55 |
+
|
56 |
+
# Time-based indexing with PTS and duration info
|
57 |
+
decoder.get_frames_played_at(seconds=[0.5, 10.4])
|
58 |
+
# FrameBatch:
|
59 |
+
# data (shape): torch.Size([2, 3, 270, 480])
|
60 |
+
# pts_seconds: tensor([ 0.4671, 10.3770], dtype=torch.float64)
|
61 |
+
# duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
|
62 |
+
```
|
63 |
+
|
64 |
+
#### Clip sampling
|
65 |
+
|
66 |
+
```python
|
67 |
+
|
68 |
+
from torchcodec.samplers import clips_at_regular_timestamps
|
69 |
+
|
70 |
+
clips_at_regular_timestamps(
|
71 |
+
decoder,
|
72 |
+
seconds_between_clip_starts=1.5,
|
73 |
+
num_frames_per_clip=4,
|
74 |
+
seconds_between_frames=0.1
|
75 |
+
)
|
76 |
+
# FrameBatch:
|
77 |
+
# data (shape): torch.Size([9, 4, 3, 270, 480])
|
78 |
+
# pts_seconds: tensor([[ 0.0000, 0.0667, 0.1668, 0.2669],
|
79 |
+
# [ 1.4681, 1.5682, 1.6683, 1.7684],
|
80 |
+
# [ 2.9696, 3.0697, 3.1698, 3.2699],
|
81 |
+
# ... (truncated), dtype=torch.float64)
|
82 |
+
# duration_seconds: tensor([[0.0334, 0.0334, 0.0334, 0.0334],
|
83 |
+
# [0.0334, 0.0334, 0.0334, 0.0334],
|
84 |
+
# [0.0334, 0.0334, 0.0334, 0.0334],
|
85 |
+
# ... (truncated), dtype=torch.float64)
|
86 |
+
```
|
87 |
+
|
88 |
+
You can use the following snippet to generate a video with FFmpeg and tryout
|
89 |
+
TorchCodec:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
fontfile=/usr/share/fonts/dejavu-sans-mono-fonts/DejaVuSansMono-Bold.ttf
|
93 |
+
output_video_file=/tmp/output_video.mp4
|
94 |
+
|
95 |
+
ffmpeg -f lavfi -i \
|
96 |
+
color=size=640x400:duration=10:rate=25:color=blue \
|
97 |
+
-vf "drawtext=fontfile=${fontfile}:fontsize=30:fontcolor=white:x=(w-text_w)/2:y=(h-text_h)/2:text='Frame %{frame_num}'" \
|
98 |
+
${output_video_file}
|
99 |
+
```
|
100 |
+
|
101 |
+
## Installing TorchCodec
|
102 |
+
### Installing CPU-only TorchCodec
|
103 |
+
|
104 |
+
1. Install the latest stable version of PyTorch following the
|
105 |
+
[official instructions](https://pytorch.org/get-started/locally/). For other
|
106 |
+
versions, refer to the table below for compatibility between versions of
|
107 |
+
`torch` and `torchcodec`.
|
108 |
+
|
109 |
+
2. Install FFmpeg, if it's not already installed. Linux distributions usually
|
110 |
+
come with FFmpeg pre-installed. TorchCodec supports all major FFmpeg versions
|
111 |
+
in [4, 7].
|
112 |
+
|
113 |
+
If FFmpeg is not already installed, or you need a more recent version, an
|
114 |
+
easy way to install it is to use `conda`:
|
115 |
+
|
116 |
+
```bash
|
117 |
+
conda install "ffmpeg<8"
|
118 |
+
# or
|
119 |
+
conda install "ffmpeg<8" -c conda-forge
|
120 |
+
```
|
121 |
+
|
122 |
+
3. Install TorchCodec:
|
123 |
+
|
124 |
+
```bash
|
125 |
+
pip install torchcodec
|
126 |
+
```
|
127 |
+
|
128 |
+
The following table indicates the compatibility between versions of
|
129 |
+
`torchcodec`, `torch` and Python.
|
130 |
+
|
131 |
+
| `torchcodec` | `torch` | Python |
|
132 |
+
| ------------------ | ------------------ | ------------------- |
|
133 |
+
| `main` / `nightly` | `main` / `nightly` | `>=3.10`, `<=3.13` |
|
134 |
+
| `0.6` | `2.8` | `>=3.9`, `<=3.13` |
|
135 |
+
| `0.5` | `2.7` | `>=3.9`, `<=3.13` |
|
136 |
+
| `0.4` | `2.7` | `>=3.9`, `<=3.13` |
|
137 |
+
| `0.3` | `2.7` | `>=3.9`, `<=3.13` |
|
138 |
+
| `0.2` | `2.6` | `>=3.9`, `<=3.13` |
|
139 |
+
| `0.1` | `2.5` | `>=3.9`, `<=3.12` |
|
140 |
+
| `0.0.3` | `2.4` | `>=3.8`, `<=3.12` |
|
141 |
+
|
142 |
+
### Installing CUDA-enabled TorchCodec
|
143 |
+
|
144 |
+
First, make sure you have a GPU that has NVDEC hardware that can decode the
|
145 |
+
format you want. Refer to Nvidia's GPU support matrix for more details
|
146 |
+
[here](https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new).
|
147 |
+
|
148 |
+
1. Install Pytorch corresponding to your CUDA Toolkit using the
|
149 |
+
[official instructions](https://pytorch.org/get-started/locally/). You'll
|
150 |
+
need the `libnpp` and `libnvrtc` CUDA libraries, which are usually part of
|
151 |
+
the CUDA Toolkit.
|
152 |
+
|
153 |
+
2. Install or compile FFmpeg with NVDEC support.
|
154 |
+
TorchCodec with CUDA should work with FFmpeg versions in [4, 7].
|
155 |
+
|
156 |
+
If FFmpeg is not already installed, or you need a more recent version, an
|
157 |
+
easy way to install it is to use `conda`:
|
158 |
+
|
159 |
+
```bash
|
160 |
+
conda install "ffmpeg<8"
|
161 |
+
# or
|
162 |
+
conda install "ffmpeg<8" -c conda-forge
|
163 |
+
```
|
164 |
+
|
165 |
+
If you are building FFmpeg from source you can follow Nvidia's guide to
|
166 |
+
configuring and installing FFmpeg with NVDEC support
|
167 |
+
[here](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.0/ffmpeg-with-nvidia-gpu/index.html).
|
168 |
+
|
169 |
+
After installing FFmpeg make sure it has NVDEC support when you list the supported
|
170 |
+
decoders:
|
171 |
+
|
172 |
+
```bash
|
173 |
+
ffmpeg -decoders | grep -i nvidia
|
174 |
+
# This should show a line like this:
|
175 |
+
# V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
176 |
+
```
|
177 |
+
|
178 |
+
To check that FFmpeg libraries work with NVDEC correctly you can decode a sample video:
|
179 |
+
|
180 |
+
```bash
|
181 |
+
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i test/resources/nasa_13013.mp4 -f null -
|
182 |
+
```
|
183 |
+
|
184 |
+
3. Install TorchCodec by passing in an `--index-url` parameter that corresponds
|
185 |
+
to your CUDA Toolkit version, example:
|
186 |
+
|
187 |
+
```bash
|
188 |
+
# This corresponds to CUDA Toolkit version 12.6. It should be the same one
|
189 |
+
# you used when you installed PyTorch (If you installed PyTorch with pip).
|
190 |
+
pip install torchcodec --index-url=https://download.pytorch.org/whl/cu126
|
191 |
+
```
|
192 |
+
|
193 |
+
Note that without passing in the `--index-url` parameter, `pip` installs
|
194 |
+
the CPU-only version of TorchCodec.
|
195 |
+
|
196 |
+
## Benchmark Results
|
197 |
+
|
198 |
+
The following was generated by running [our benchmark script](./benchmarks/decoders/generate_readme_data.py) on a lightly loaded 22-core machine with an Nvidia A100 with
|
199 |
+
5 [NVDEC decoders](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvdec-application-note/index.html#).
|
200 |
+
|
201 |
+

|
202 |
+
|
203 |
+
The top row is a [Mandelbrot](https://ffmpeg.org/ffmpeg-filters.html#mandelbrot) video
|
204 |
+
generated from FFmpeg that has a resolution of 1280x720 at 60 fps and is 120 seconds long.
|
205 |
+
The bottom row is [promotional video from NASA](https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4)
|
206 |
+
that has a resolution of 960x540 at 29.7 fps and is 206 seconds long. Both videos were
|
207 |
+
encoded with libx264 and yuv420p pixel format. All decoders, except for TorchVision, used FFmpeg 6.1.2. TorchVision used FFmpeg 4.2.2.
|
208 |
+
|
209 |
+
For TorchCodec, the "approx" label means that it was using [approximate mode](https://pytorch.org/torchcodec/stable/generated_examples/approximate_mode.html)
|
210 |
+
for seeking.
|
211 |
+
|
212 |
+
## Contributing
|
213 |
+
|
214 |
+
We welcome contributions to TorchCodec! Please see our [contributing
|
215 |
+
guide](CONTRIBUTING.md) for more details.
|
216 |
+
|
217 |
+
## License
|
218 |
+
|
219 |
+
TorchCodec is released under the [BSD 3 license](./LICENSE).
|
220 |
+
|
221 |
+
However, TorchCodec may be used with code not written by Meta which may be
|
222 |
+
distributed under different licenses.
|
223 |
+
|
224 |
+
For example, if you build TorchCodec with ENABLE_CUDA=1 or use the CUDA-enabled
|
225 |
+
release of torchcodec, please review CUDA's license here:
|
226 |
+
[Nvidia licenses](https://docs.nvidia.com/cuda/eula/index.html).
|