clementchadebec commited on
Commit
c0490dd
·
verified ·
1 Parent(s): 46fe43d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +174 -0
app.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import random
3
+ import warnings
4
+
5
+ import gradio as gr
6
+ import numpy as np
7
+ import spaces
8
+ import torch
9
+ from diffusers import FluxControlNetModel
10
+ from diffusers.pipelines import FluxControlNetPipeline
11
+ from diffusers.utils import load_image
12
+ from gradio_imageslider import ImageSlider
13
+ from PIL import Image
14
+
15
+ css = """
16
+ #col-container {
17
+ margin: 0 auto;
18
+ max-width: 512px;
19
+ }
20
+ """
21
+
22
+ if torch.cuda.is_available():
23
+ power_device = "GPU"
24
+ device = "cuda"
25
+ else:
26
+ power_device = "CPU"
27
+ device = "cpu"
28
+
29
+ # Load pipeline
30
+ controlnet = FluxControlNetModel.from_pretrained(
31
+ "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
32
+ ).to(device)
33
+ pipe = FluxControlNetPipeline.from_pretrained(
34
+ "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16
35
+ )
36
+ pipe.to(device)
37
+
38
+ MAX_SEED = 1000000
39
+ MAX_PIXEL_BUDGET = 1024 * 1024
40
+
41
+
42
+ def process_input(input_image, upscale_factor, **kwargs):
43
+ w, h = input_image.size
44
+ w_original, h_original = w, h
45
+ aspect_ratio = w / h
46
+
47
+ if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
48
+ warnings.warn(
49
+ f"Input image is too large ({w}x{h}). Resizing to {MAX_PIXEL_BUDGET} pixels."
50
+ )
51
+ input_image = input_image.resize(
52
+ (
53
+ int(aspect_ratio * MAX_PIXEL_BUDGET // upscale_factor),
54
+ int(MAX_PIXEL_BUDGET // aspect_ratio // upscale_factor),
55
+ )
56
+ )
57
+
58
+ # resize to multiple of 8
59
+ w, h = input_image.size
60
+ w = w - w % 8
61
+ h = h - h % 8
62
+
63
+ return input_image.resize((w, h)), w_original, h_original
64
+
65
+
66
+ # @spaces.GPU
67
+ def infer(
68
+ seed,
69
+ randomize_seed,
70
+ input_image,
71
+ num_inference_steps,
72
+ upscale_factor,
73
+ progress=gr.Progress(track_tqdm=True),
74
+ ):
75
+ print(input_image)
76
+ if randomize_seed:
77
+ seed = random.randint(0, MAX_SEED)
78
+
79
+ input_image, w_original, h_original = process_input(input_image, upscale_factor)
80
+
81
+ print(input_image.size, w_original, h_original)
82
+
83
+ # rescale with upscale factor
84
+ w, h = input_image.size
85
+ control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
86
+
87
+ generator = torch.Generator().manual_seed(seed)
88
+
89
+ image = pipe(
90
+ prompt="",
91
+ control_image=control_image,
92
+ controlnet_conditioning_scale=0.6,
93
+ num_inference_steps=num_inference_steps,
94
+ guidance_scale=3.5,
95
+ height=control_image.size[1],
96
+ width=control_image.size[0],
97
+ generator=generator,
98
+ ).images[0]
99
+
100
+ # resize to target desired size
101
+ image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
102
+ image.save("output.jpg")
103
+ # convert to numpy
104
+ return [input_image, image]
105
+
106
+
107
+ with gr.Blocks(css=css) as demo:
108
+ # with gr.Column(elem_id="col-container"):
109
+ gr.Markdown(
110
+ f"""
111
+ # ⚡ Flux.1-dev Upscaler ControlNet ⚡
112
+ This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler taking as input a low resolution image to generate a high resolution image.
113
+ Currently running on {power_device}.
114
+ """
115
+ )
116
+
117
+ with gr.Row():
118
+ run_button = gr.Button(value="Run")
119
+
120
+ with gr.Row():
121
+ with gr.Column(scale=4):
122
+ input_im = gr.Image(label="Input Image", type="pil")
123
+ with gr.Column(scale=1):
124
+ num_inference_steps = gr.Slider(
125
+ label="Number of Inference Steps",
126
+ minimum=8,
127
+ maximum=50,
128
+ step=1,
129
+ value=28,
130
+ )
131
+ upscale_factor = gr.Slider(
132
+ label="Upscale Factor",
133
+ minimum=1,
134
+ maximum=4,
135
+ step=1,
136
+ value=4,
137
+ )
138
+ seed = gr.Slider(
139
+ label="Seed",
140
+ minimum=0,
141
+ maximum=MAX_SEED,
142
+ step=1,
143
+ value=42,
144
+ )
145
+
146
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
147
+
148
+ with gr.Row():
149
+ result = ImageSlider(label="Input / Output", type="pil")
150
+
151
+ examples = gr.Examples(
152
+ examples=[
153
+ "examples/image_1.jpg",
154
+ "examples/image_1.jpg",
155
+ "examples/image_1.jpg",
156
+ "examples/image_1.jpg",
157
+ ],
158
+ inputs=input_im,
159
+ )
160
+
161
+ gr.Markdown("**Disclaimer:**")
162
+ gr.Markdown(
163
+ "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
164
+ )
165
+ gr.on(
166
+ [run_button.click],
167
+ fn=infer,
168
+ inputs=[seed, randomize_seed, input_im, num_inference_steps, upscale_factor],
169
+ outputs=result,
170
+ show_api=False,
171
+ # show_progress="minimal",
172
+ )
173
+
174
+ demo.queue().launch(share=True)