Spaces:
Running
on
Zero
Running
on
Zero
clementchadebec
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ import spaces
|
|
8 |
import torch
|
9 |
from diffusers import FluxControlNetModel
|
10 |
from diffusers.pipelines import FluxControlNetPipeline
|
11 |
-
from diffusers.utils import load_image
|
12 |
from gradio_imageslider import ImageSlider
|
13 |
from PIL import Image
|
14 |
|
@@ -46,12 +45,12 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
46 |
|
47 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
48 |
warnings.warn(
|
49 |
-
f"
|
50 |
)
|
51 |
input_image = input_image.resize(
|
52 |
(
|
53 |
-
int(aspect_ratio * MAX_PIXEL_BUDGET // upscale_factor),
|
54 |
-
int(MAX_PIXEL_BUDGET // aspect_ratio // upscale_factor),
|
55 |
)
|
56 |
)
|
57 |
|
@@ -63,23 +62,21 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
63 |
return input_image.resize((w, h)), w_original, h_original
|
64 |
|
65 |
|
66 |
-
|
67 |
def infer(
|
68 |
seed,
|
69 |
randomize_seed,
|
70 |
input_image,
|
71 |
num_inference_steps,
|
72 |
upscale_factor,
|
|
|
73 |
progress=gr.Progress(track_tqdm=True),
|
74 |
):
|
75 |
-
print(input_image)
|
76 |
if randomize_seed:
|
77 |
seed = random.randint(0, MAX_SEED)
|
78 |
-
|
79 |
input_image, w_original, h_original = process_input(input_image, upscale_factor)
|
80 |
|
81 |
-
print(input_image.size, w_original, h_original)
|
82 |
-
|
83 |
# rescale with upscale factor
|
84 |
w, h = input_image.size
|
85 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
@@ -89,7 +86,7 @@ def infer(
|
|
89 |
image = pipe(
|
90 |
prompt="",
|
91 |
control_image=control_image,
|
92 |
-
controlnet_conditioning_scale=
|
93 |
num_inference_steps=num_inference_steps,
|
94 |
guidance_scale=3.5,
|
95 |
height=control_image.size[1],
|
@@ -101,7 +98,7 @@ def infer(
|
|
101 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
102 |
image.save("output.jpg")
|
103 |
# convert to numpy
|
104 |
-
return [
|
105 |
|
106 |
|
107 |
with gr.Blocks(css=css) as demo:
|
@@ -135,6 +132,13 @@ with gr.Blocks(css=css) as demo:
|
|
135 |
step=1,
|
136 |
value=4,
|
137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
seed = gr.Slider(
|
139 |
label="Seed",
|
140 |
minimum=0,
|
@@ -166,10 +170,17 @@ with gr.Blocks(css=css) as demo:
|
|
166 |
gr.on(
|
167 |
[run_button.click],
|
168 |
fn=infer,
|
169 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
outputs=result,
|
171 |
show_api=False,
|
172 |
# show_progress="minimal",
|
173 |
)
|
174 |
|
175 |
-
demo.queue().launch()
|
|
|
8 |
import torch
|
9 |
from diffusers import FluxControlNetModel
|
10 |
from diffusers.pipelines import FluxControlNetPipeline
|
|
|
11 |
from gradio_imageslider import ImageSlider
|
12 |
from PIL import Image
|
13 |
|
|
|
45 |
|
46 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
47 |
warnings.warn(
|
48 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
49 |
)
|
50 |
input_image = input_image.resize(
|
51 |
(
|
52 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
53 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
54 |
)
|
55 |
)
|
56 |
|
|
|
62 |
return input_image.resize((w, h)), w_original, h_original
|
63 |
|
64 |
|
65 |
+
@spaces.GPU
|
66 |
def infer(
|
67 |
seed,
|
68 |
randomize_seed,
|
69 |
input_image,
|
70 |
num_inference_steps,
|
71 |
upscale_factor,
|
72 |
+
controlnet_conditioning_scale,
|
73 |
progress=gr.Progress(track_tqdm=True),
|
74 |
):
|
|
|
75 |
if randomize_seed:
|
76 |
seed = random.randint(0, MAX_SEED)
|
77 |
+
true_input_image = input_image
|
78 |
input_image, w_original, h_original = process_input(input_image, upscale_factor)
|
79 |
|
|
|
|
|
80 |
# rescale with upscale factor
|
81 |
w, h = input_image.size
|
82 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
|
|
86 |
image = pipe(
|
87 |
prompt="",
|
88 |
control_image=control_image,
|
89 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
90 |
num_inference_steps=num_inference_steps,
|
91 |
guidance_scale=3.5,
|
92 |
height=control_image.size[1],
|
|
|
98 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
99 |
image.save("output.jpg")
|
100 |
# convert to numpy
|
101 |
+
return [true_input_image, image, seed]
|
102 |
|
103 |
|
104 |
with gr.Blocks(css=css) as demo:
|
|
|
132 |
step=1,
|
133 |
value=4,
|
134 |
)
|
135 |
+
controlnet_conditioning_scale = gr.Slider(
|
136 |
+
label="Controlnet Conditioning Scale",
|
137 |
+
minimum=0.1,
|
138 |
+
maximum=1.5,
|
139 |
+
step=0.1,
|
140 |
+
value=0.6,
|
141 |
+
)
|
142 |
seed = gr.Slider(
|
143 |
label="Seed",
|
144 |
minimum=0,
|
|
|
170 |
gr.on(
|
171 |
[run_button.click],
|
172 |
fn=infer,
|
173 |
+
inputs=[
|
174 |
+
seed,
|
175 |
+
randomize_seed,
|
176 |
+
input_im,
|
177 |
+
num_inference_steps,
|
178 |
+
upscale_factor,
|
179 |
+
controlnet_conditioning_scale,
|
180 |
+
],
|
181 |
outputs=result,
|
182 |
show_api=False,
|
183 |
# show_progress="minimal",
|
184 |
)
|
185 |
|
186 |
+
demo.queue().launch(share=True)
|