Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
|
|
4 |
from nltk.tokenize import sent_tokenize
|
5 |
import torch
|
6 |
|
7 |
-
model = "janny127/autotrain-
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model)
|
9 |
|
10 |
pipeline = pipeline(
|
@@ -35,6 +35,8 @@ def predict(prompt, history):
|
|
35 |
final_result = generated_text.split("### Assistant:")[1]
|
36 |
if " Human: " in final_result:
|
37 |
final_result = final_result.split(" Human: ")[0]
|
|
|
|
|
38 |
|
39 |
# return generated_text.strip()
|
40 |
return final_result.strip()
|
@@ -45,40 +47,4 @@ gr.ChatInterface(predict,
|
|
45 |
examples=['How to cook a fish?', 'Who is the president of US now?']
|
46 |
).launch() # Launching the web interface.
|
47 |
|
48 |
-
# interface = gr.ChatInterface(
|
49 |
-
# fn=predict,
|
50 |
-
# stop_btn=None
|
51 |
-
# )
|
52 |
-
|
53 |
-
# with gr.Blocks() as demo:
|
54 |
-
# interface.render()
|
55 |
-
|
56 |
-
|
57 |
-
# demo.launch()
|
58 |
-
|
59 |
-
# def generate_answer(query, sample_num=3):
|
60 |
-
# formatted_prompt = (
|
61 |
-
# f"<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"
|
62 |
-
|
63 |
-
# )
|
64 |
-
|
65 |
-
# sequences = pipeline(
|
66 |
-
# formatted_prompt,
|
67 |
-
# do_sample=True,
|
68 |
-
# top_k=50,
|
69 |
-
# top_p = 0.9,
|
70 |
-
# num_return_sequences=sample_num,
|
71 |
-
# repetition_penalty=1.1,
|
72 |
-
# max_new_tokens=150,
|
73 |
-
# eos_token_id=CHAT_EOS_TOKEN_ID,
|
74 |
-
# )
|
75 |
-
# answers = list()
|
76 |
-
# for seq in sequences:
|
77 |
-
# answer = seq['generated_text'].replace(formatted_prompt, "")
|
78 |
-
# answers.append(answer)
|
79 |
-
# answer = sent_tokenize(answers[0])
|
80 |
-
# final_answer = ''
|
81 |
-
# for an in answer:
|
82 |
-
# final_answer += an.strip()
|
83 |
-
# return final_answer
|
84 |
|
|
|
4 |
from nltk.tokenize import sent_tokenize
|
5 |
import torch
|
6 |
|
7 |
+
model = "janny127/autotrain-pje3d-uvelc1"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model)
|
9 |
|
10 |
pipeline = pipeline(
|
|
|
35 |
final_result = generated_text.split("### Assistant:")[1]
|
36 |
if " Human: " in final_result:
|
37 |
final_result = final_result.split(" Human: ")[0]
|
38 |
+
if " #" in final_result:
|
39 |
+
final_result = final_result.split(" #")[0]
|
40 |
|
41 |
# return generated_text.strip()
|
42 |
return final_result.strip()
|
|
|
47 |
examples=['How to cook a fish?', 'Who is the president of US now?']
|
48 |
).launch() # Launching the web interface.
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|