import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gradio as gr # Define the VAE model class ConvVAE(nn.Module): def __init__(self, input_channels=3, latent_dim=32): super(ConvVAE, self).__init__() self.latent_dim = latent_dim # Encoder self.enc_conv1 = nn.Conv2d(input_channels, 64, kernel_size=3, stride=2, padding=1) self.enc_conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.enc_conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.fc_mu = nn.Linear(256 * 4 * 10, latent_dim) self.fc_logvar = nn.Linear(256 * 4 * 10, latent_dim) # Decoder self.fc_decode = nn.Linear(latent_dim, 256 * 4 * 10) self.dec_conv1 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, padding=1) self.dec_conv2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1) self.dec_conv3 = nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=(0,1)) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def forward(self, x): x = F.relu(self.enc_conv1(x)) x = F.relu(self.enc_conv2(x)) x = F.relu(self.enc_conv3(x)) x = x.view(x.size(0), -1) mu = self.fc_mu(x) logvar = self.fc_logvar(x) z = self.reparameterize(mu, logvar) out = self.decode(z) return out, mu, logvar def decode(self, z): x = F.relu(self.fc_decode(z)) x = x.view(x.size(0), 256, 4, 10) x = F.relu(self.dec_conv1(x)) x = F.relu(self.dec_conv2(x)) x = self.dec_conv3(x) return F.softmax(x, dim=1) # Load trained model model = ConvVAE() model.load_state_dict(torch.load("vae_supertux.pth", map_location=torch.device("cpu"))) model.eval() # Sampling def sample_with_temperature(probs, temperature=1.2): logits = torch.log(probs + 1e-8) / temperature scaled_probs = torch.softmax(logits, dim=1) batch, channels, height, width = scaled_probs.shape scaled_probs = scaled_probs.permute(0, 2, 3, 1).contiguous().view(-1, channels) sampled = torch.multinomial(scaled_probs, num_samples=1) sampled = sampled.view(batch, height, width) return sampled def generate_map(seed: int = 0): model.eval() if seed == 0: seed = torch.randint(10000, (1,)).item() torch.manual_seed(seed) z = torch.randn(1, model.latent_dim).to("cpu") with torch.no_grad(): output = model.decode(z) output = sample_with_temperature(output, temperature=3)[0].cpu().numpy() grid = np.pad(output, ((5, 0), (0, 0)), mode='constant', constant_values=0) # Post-processing rule to collapse columns with inner air blocks for j in range(len(grid[0])): non_air_blocks = [grid[i, j] for i in range(len(grid)) if grid[i, j] != 0] k = len(non_air_blocks) if k > 0: grid[20 - k:20, j] = non_air_blocks grid[0:20 - k, j] = 0 return ["".join(map(str, row)) for row in grid] # Convert each row to a string gr.Interface( fn=generate_map, inputs=gr.Number(label="Seed (set to 0 for random generation)"), outputs=gr.JSON(label="Generated Map Grid"), title="VAE Level Generator", description="Returns a 20x40 grid as a list of strings where 0=air, 1=ground, 2=lava" ).launch()