import gradio as gr import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import chi2 from sklearn import metrics from sklearn.ensemble import AdaBoostClassifier from aif360.datasets import BinaryLabelDataset from aif360.metrics import BinaryLabelDatasetMetric from aif360.algorithms.preprocessing.reweighing import Reweighing from sklearn.metrics import classification_report def data_description(action_type): df = pd.read_csv('emp_experience_data.csv') pd.options.display.max_columns = 25 pd.options.display.max_rows = 10 data_encoded = df.copy(deep=True) categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region'] label_encoding = LabelEncoder() for col in categorical_column: data_encoded[col] = label_encoding.fit_transform(data_encoded[col]) input_data = data_encoded.drop(['Attrition'], axis=1) target_data = data_encoded[['Attrition']] col_values = list(input_data.columns.values) if action_type == "Input Data": return input_data.head() if action_type == "Target Data": return target_data.head() if action_type == "Feature Selection By Mutual Information": feature_scores = mutual_info_classif(input_data, target_data) data = [["Feature", "Mutual Information (0: independent, 1: dependent)"]] for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]: data.append([fname, score]) return data if action_type == "Feature Selection By Chi Square": feature_scores = chi2(input_data, target_data)[0] data = [["Feature", "Chi-Square (Frequency Distribution)"]] for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]: data.append([fname, score]) return data if action_type == "AdaBoost Classifier": data_selected = data_encoded[['EmployeeExperience', 'HealthBenefitsSatisfaction', 'SalarySatisfaction', 'Designation', 'HealthConscious', 'EmployeeFeedbackSentiments', 'Education', 'Gender', 'HoursOfTrainingAttendedLastYear', 'InternalJobMovement', 'Attrition']] input_data = data_selected.drop(['Attrition'], axis=1) target_data = data_selected[['Attrition']] input_data = data_selected[0:150] validation_data = data_selected[150:198] validation_input_data = validation_data.drop(['Attrition'], axis=1) validation_target_data = validation_data[['Attrition']] test_data = data_selected[198:] test_input_data = test_data.drop(['Attrition'], axis=1) test_target_data = test_data[['Attrition']] privileged_groups = [{'Gender': 0}] unprivileged_groups = [{'Gender': 1}] favorable_label = 0 unfavorable_label = 1 BM_dataset = BinaryLabelDataset(favorable_label=favorable_label, unfavorable_label=unfavorable_label, df=input_data, label_names=['Attrition'], protected_attribute_names=['Gender'], unprivileged_protected_attributes=unprivileged_groups) metric_orig_train = BinaryLabelDatasetMetric(BM_dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW.fit(BM_dataset) train_tf_dataset = RW.transform(BM_dataset) metric_orig_train = BinaryLabelDatasetMetric(train_tf_dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) print("Difference in mean outcomes between unprivileged and privileged groups = %f"% metric_orig_train.mean_difference()) estimator = [100] for i in estimator: cls = AdaBoostClassifier(n_estimators=i) cls.fit(train_tf_dataset.features, train_tf_dataset.labels,sample_weight=train_tf_dataset.instance_weights) predicted_output = cls.predict(train_tf_dataset.features) accuracy = metrics.accuracy_score(train_tf_dataset.labels, predicted_output) report = classification_report(train_tf_dataset.labels, predicted_output) df_train = pd.DataFrame(report).transpose() predicted_output = cls.predict(validation_input_data) accuracy = metrics.accuracy_score(validation_target_data, predicted_output) report_pred = classification_report(validation_target_data, predicted_output) df_pred = pd.DataFrame(report_pred).transpose() inputs = [ gr.Dropdown(["Input Data", "Target Data", "Feature Selection By Mutual Information", "Feature Selection By Chi Square", "AdaBoost Classifier"], label="Develop Data Models") ] outputs = [gr.DataFrame()] demo = gr.Interface( fn = data_description, inputs = inputs, outputs = outputs, title="Employee-Experience: Model Development", allow_flagging=False ) if __name__ == "__main__": demo.launch()