import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import LabelEncoder import seaborn as sns import gradio as gr plt.switch_backend('Agg') pd.options.display.max_columns = 25 pd.options.display.max_rows = 300 def outbreak(plot_type): df = pd.read_csv('emp_experience_data.csv') data_encoded = df.copy(deep=True) categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region'] label_encoding = LabelEncoder() for col in categorical_column: data_encoded[col] = label_encoding.fit_transform(data_encoded[col]) if plot_type == "Find Data Correlation": fig = plt.figure() data_correlation = data_encoded.corr() plt.rcParams["figure.figsize"] = [10,10] sns.heatmap(data_correlation,xticklabels=data_correlation.columns,yticklabels=data_correlation.columns) return fig if plot_type == "Age Attrition": fig = plt.figure() positive_attrition_df = data_encoded.loc[data_encoded['Attrition'] == "Yes"] plt.hist(positive_attrition_df['Age'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='blue') plt.xlabel("Age") plt.ylabel("Count") plt.title("Age vs Attrition") return fig if plot_type == "Distance Attrition": fig = plt.figure() positive_attrition_df = data_encoded.loc[data_encoded['Attrition'] == "Yes"] plt.hist(positive_attrition_df['DistanceFromHome'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='green') plt.xlabel("Distance From Home") plt.ylabel("Count") plt.title("Distance vs Attrition") return fig inputs = [ gr.Dropdown(["Find Data Correlation", "Age Attrition", "Distance Attrition"], label="Data Correlation and Visualization") ] outputs = gr.Plot() demo = gr.Interface( fn = outbreak, inputs = inputs, outputs = outputs, title="Employee-Experience: Data Correlation and Pattern Visualization", allow_flagging=False ) if __name__ == "__main__": demo.launch()