Spaces:
Runtime error
Runtime error
import pandas as pd | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.preprocessing import LabelEncoder | |
import seaborn as sns | |
import gradio as gr | |
plt.switch_backend('Agg') | |
pd.options.display.max_columns = 25 | |
pd.options.display.max_rows = 300 | |
def outbreak(plot_type): | |
df = pd.read_csv('emp_experience_data.csv') | |
data_encoded = df.copy(deep=True) | |
categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation', | |
'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region'] | |
label_encoding = LabelEncoder() | |
for col in categorical_column: | |
data_encoded[col] = label_encoding.fit_transform(data_encoded[col]) | |
if plot_type == "Find Data Correlation": | |
fig = plt.figure() | |
data_correlation = data_encoded.corr() | |
sns.heatmap(data_correlation, xticklabels = data_correlation.columns, yticklabels = data_correlation.columns) | |
return fig | |
if plot_type == "Filter Correlation Data": | |
fig = plt.figure() | |
filtered_df = df[['EmployeeExperience', 'EmployeeFeedbackSentiments', 'Age', 'SalarySatisfaction', 'BusinessTravel', 'HealthBenefitsSatisfaction']] | |
correlation_filter_data = filtered_df.corr() | |
sns.heatmap(correlation_filter_data, xticklabels = filtered_df.columns, yticklabels = filtered_df.columns) | |
return fig | |
if plot_type == "Age vs Attrition": | |
fig = plt.figure() | |
plt.hist(data_encoded['Age'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='red') | |
plt.xlabel("Age") | |
plt.ylabel("Count") | |
plt.title("Age vs Attrition") | |
return fig | |
if plot_type == "Business Travel vs Attrition": | |
fig = plt.figure() | |
ax = sns.countplot(x="BusinessTravel", hue="Attrition", data=data_encoded) | |
for p in ax.patches: | |
ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1)) | |
return fig | |
if plot_type == "Employee Experience vs Attrition": | |
fig = plt.figure() | |
ax = sns.countplot(x="EmployeeExperience", hue="Attrition", data=data_encoded) | |
for p in ax.patches: | |
ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1)) | |
return fig | |
inputs = [ | |
gr.Dropdown(["Find Data Correlation", "Filter Correlation Data", "Business Travel vs Attrition", "Employee Experience vs Attrition", "Age vs Attrition",], label="Data Correlation and Visualization") | |
] | |
outputs = gr.Plot() | |
demo = gr.Interface( | |
fn = outbreak, | |
inputs = inputs, | |
outputs = outputs, | |
title="Employee-Experience: Data Correlation and Pattern Visualization", | |
allow_flagging=False | |
) | |
if __name__ == "__main__": | |
demo.launch() |