Spaces:
Sleeping
Sleeping
File size: 1,816 Bytes
c127950 0897689 c127950 0897689 cbcbb46 0897689 48dc1ec 0897689 4806750 0897689 689f27c 68f77aa 0897689 4806750 68f77aa 0897689 7388d5d 68f77aa 0897689 48dc1ec b25c66c 48dc1ec 16d3b5a c127950 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from huggingface_hub import InferenceClient
def client_fn(model):
if "Nous" in model:
return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
elif "Star" in model:
return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
else:
return InferenceClient("google/gemma-1.1-2b-it")
system_instructions1 = "[SYSTEM] Your task is to Answer the question. Keep conversation very short, clear and concise. The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things.[QUESTION]"
def models(text, model="Mixtral 8x7B"):
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=100,
do_sample=True,
)
formatted_prompt = system_instructions1 + text + "[ANSWER]"
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output+=response.token.text
if output.endswith("<|assistant|>"):
output = output[:-13]
elif output.endswith("</s>"):
output = output[:-4]
return output
description="# Chat GO"
demo = gr.Interface(description=description,fn=models, inputs=["text", gr.Dropdown([ 'Mixtral 8x7B','Nous Hermes Mixtral 8x7B DPO','StarChat2 15b','Mistral 7B v0.3','Phi 3 mini', 'FASTEST' ], value="FASTEST", label="Select Model") ], outputs="text", live=True, batch=True, max_batch_size=10000)
demo.queue(max_size=300000)
demo.launch()
|