''' Usage: python -m ferret.serve.gradio_web_server --controller http://localhost:10000 --add_region_feature ''' import argparse import datetime import json import os import time import gradio as gr import requests from conversation import (default_conversation, conv_templates, SeparatorStyle) from constants import LOGDIR from utils import (build_logger, server_error_msg, violates_moderation, moderation_msg) import hashlib # Added import re from copy import deepcopy from PIL import ImageDraw, ImageFont from gradio import processing_utils import numpy as np import torch import torch.nn.functional as F from scipy.ndimage import binary_dilation, binary_erosion import pdb from gradio_css import code_highlight_css import spaces from inference import inference_and_run DEFAULT_REGION_REFER_TOKEN = "[region]" DEFAULT_REGION_FEA_TOKEN = "" logger = build_logger("gradio_web_server", "gradio_web_server.log") headers = {"User-Agent": "FERRET Client"} no_change_btn = gr.Button enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) priority = { "vicuna-13b": "aaaaaaa", "koala-13b": "aaaaaab", } VOCAB_IMAGE_W = 1000 # 224 VOCAB_IMAGE_H = 1000 # 224 def generate_mask_for_feature(coor, raw_w, raw_h, mask=None): if mask is not None: assert mask.shape[0] == raw_w and mask.shape[1] == raw_h coor_mask = torch.zeros((raw_w, raw_h)) # Assume it samples a point. if len(coor) == 2: # Define window size span = 5 # Make sure the window does not exceed array bounds x_min = max(0, coor[0] - span) x_max = min(raw_w, coor[0] + span + 1) y_min = max(0, coor[1] - span) y_max = min(raw_h, coor[1] + span + 1) coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1 assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}" elif len(coor) == 4: # Box input or Sketch input. coor_mask = torch.zeros((raw_w, raw_h)) coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1 if mask is not None: coor_mask = coor_mask * mask # coor_mask = torch.from_numpy(coor_mask) # pdb.set_trace() assert len(coor_mask.nonzero()) != 0 return coor_mask.tolist() def draw_box(coor, region_mask, region_ph, img, input_mode): colors = ["red"] draw = ImageDraw.Draw(img) font = ImageFont.truetype("./DejaVuSans.ttf", size=18) if input_mode == 'Box': draw.rectangle([coor[0], coor[1], coor[2], coor[3]], outline=colors[0], width=4) draw.rectangle([coor[0], coor[3] - int(font.size * 1.2), coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[3]], outline=colors[0], fill=colors[0], width=4) draw.text([coor[0] + int(font.size * 0.2), coor[3] - int(font.size*1.2)], region_ph, font=font, fill=(255,255,255)) elif input_mode == 'Point': r = 8 leftUpPoint = (coor[0]-r, coor[1]-r) rightDownPoint = (coor[0]+r, coor[1]+r) twoPointList = [leftUpPoint, rightDownPoint] draw.ellipse(twoPointList, outline=colors[0], width=4) draw.rectangle([coor[0], coor[1], coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[1] + int(font.size * 1.2)], outline=colors[0], fill=colors[0], width=4) draw.text([coor[0] + int(font.size * 0.2), coor[1]], region_ph, font=font, fill=(255,255,255)) elif input_mode == 'Sketch': draw.rectangle([coor[0], coor[3] - int(font.size * 1.2), coor[0] + int((len(region_ph) + 0.8) * font.size * 0.6), coor[3]], outline=colors[0], fill=colors[0], width=4) draw.text([coor[0] + int(font.size * 0.2), coor[3] - int(font.size*1.2)], region_ph, font=font, fill=(255,255,255)) # Use morphological operations to find the boundary mask = np.array(region_mask) dilated = binary_dilation(mask, structure=np.ones((3,3))) eroded = binary_erosion(mask, structure=np.ones((3,3))) boundary = dilated ^ eroded # XOR operation to find the difference between dilated and eroded mask # Loop over the boundary and paint the corresponding pixels for i in range(boundary.shape[0]): for j in range(boundary.shape[1]): if boundary[i, j]: # This is a pixel on the boundary, paint it red draw.point((i, j), fill=colors[0]) else: NotImplementedError(f'Input mode of {input_mode} is not Implemented.') return img def get_conv_log_filename(): t = datetime.datetime.now() name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") return name # TODO: return model manually just one for now called "jadechoghari/Ferret-UI-Gemma2b" def get_model_list(): # ret = requests.post(args.controller_url + "/refresh_all_workers") # assert ret.status_code == 200 # ret = requests.post(args.controller_url + "/list_models") # models = ret.json()["models"] # models.sort(key=lambda x: priority.get(x, x)) # logger.info(f"Models: {models}") # return models models = ["jadechoghari/Ferret-UI-Gemma2b"] logger.info(f"Models: {models}") return models get_window_url_params = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log(url_params); return url_params; } """ def load_demo(url_params, request: gr.Request): # logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") dropdown_update = gr.Dropdown(visible=True) if "model" in url_params: model = url_params["model"] if model in models: dropdown_update = gr.Dropdown( value=model, visible=True) state = default_conversation.copy() print("state", state) return (state, dropdown_update, gr.Chatbot(visible=True), gr.Textbox(visible=True), gr.Button(visible=True), gr.Row(visible=True), gr.Accordion(visible=True)) def load_demo_refresh_model_list(request: gr.Request): # logger.info(f"load_demo. ip: {request.client.host}") models = get_model_list() state = default_conversation.copy() return (state, gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else ""), gr.Chatbot(visible=True), gr.Textbox(visible=True), gr.Button(visible=True), gr.Row(visible=True), gr.Accordion(visible=True)) def vote_last_response(state, vote_type, model_selector, request: gr.Request): with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "model": model_selector, "state": state.dict(), "ip": request.client.host, } fout.write(json.dumps(data) + "\n") def upvote_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, image_process_mode, request: gr.Request): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 def clear_history(request: gr.Request): state = default_conversation.copy() return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5 + \ (None, {'region_placeholder_tokens':[],'region_coordinates':[],'region_masks':[],'region_masks_in_prompts':[],'masks':[]}, [], None) def resize_bbox(box, image_w=None, image_h=None, default_wh=VOCAB_IMAGE_W): ratio_w = image_w * 1.0 / default_wh ratio_h = image_h * 1.0 / default_wh new_box = [int(box[0] * ratio_w), int(box[1] * ratio_h), \ int(box[2] * ratio_w), int(box[3] * ratio_h)] return new_box def show_location(sketch_pad, chatbot): image = sketch_pad['image'] img_w, img_h = image.size new_bboxes = [] old_bboxes = [] # chatbot[0] is image. text = chatbot[1:] for round_i in text: human_input = round_i[0] model_output = round_i[1] # TODO: Difference: vocab representation. # pattern = r'\[x\d*=(\d+(?:\.\d+)?), y\d*=(\d+(?:\.\d+)?), x\d*=(\d+(?:\.\d+)?), y\d*=(\d+(?:\.\d+)?)\]' pattern = r'\[(\d+(?:\.\d+)?), (\d+(?:\.\d+)?), (\d+(?:\.\d+)?), (\d+(?:\.\d+)?)\]' matches = re.findall(pattern, model_output) for match in matches: x1, y1, x2, y2 = map(int, match) new_box = resize_bbox([x1, y1, x2, y2], img_w, img_h) new_bboxes.append(new_box) old_bboxes.append([x1, y1, x2, y2]) set_old_bboxes = sorted(set(map(tuple, old_bboxes)), key=list(map(tuple, old_bboxes)).index) list_old_bboxes = list(map(list, set_old_bboxes)) set_bboxes = sorted(set(map(tuple, new_bboxes)), key=list(map(tuple, new_bboxes)).index) list_bboxes = list(map(list, set_bboxes)) output_image = deepcopy(image) draw = ImageDraw.Draw(output_image) #TODO: change from local to online path font = ImageFont.truetype("./DejaVuSans.ttf", 28) for i in range(len(list_bboxes)): x1, y1, x2, y2 = list_old_bboxes[i] x1_new, y1_new, x2_new, y2_new = list_bboxes[i] obj_string = '[obj{}]'.format(i) for round_i in text: model_output = round_i[1] model_output = model_output.replace('[{}, {}, {}, {}]'.format(x1, y1, x2, y2), obj_string) round_i[1] = model_output draw.rectangle([(x1_new, y1_new), (x2_new, y2_new)], outline="red", width=3) draw.text((x1_new+2, y1_new+5), obj_string[1:-1], fill="red", font=font) return (output_image, [chatbot[0]] + text, disable_btn) def add_text(state, text, image_process_mode, original_image, sketch_pad, request: gr.Request): print("add text called!") image = sketch_pad['image'] print("text", text, "and : ", len(text)) print("Image path", original_image) if len(text) <= 0 and image is None: state.skip_next = True return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 if args.moderate: flagged = violates_moderation(text) if flagged: state.skip_next = True return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( no_change_btn,) * 5 text = text[:1536] # Hard cut-off if original_image is None: assert image is not None original_image = image.copy() print('No location, copy original image in add_text') if image is not None: if state.first_round: text = text[:1200] # Hard cut-off for images if '' not in text: # text = '' + text text = text + '\n' text = (text, original_image, image_process_mode) if len(state.get_images(return_pil=True)) > 0: new_state = default_conversation.copy() new_state.first_round = False state=new_state print('First round add image finsihed.') state.append_message(state.roles[0], text) state.append_message(state.roles[1], None) state.skip_next = False return (state, state.to_gradio_chatbot(), "", original_image) + (disable_btn,) * 5 def post_process_code(code): sep = "\n```" if sep in code: blocks = code.split(sep) if len(blocks) % 2 == 1: for i in range(1, len(blocks), 2): blocks[i] = blocks[i].replace("\\_", "_") code = sep.join(blocks) return code def find_indices_in_order(str_list, STR): indices = [] i = 0 while i < len(STR): for element in str_list: if STR[i:i+len(element)] == element: indices.append(str_list.index(element)) i += len(element) - 1 break i += 1 return indices def format_region_prompt(prompt, refer_input_state): # Find regions in prompts and assign corresponding region masks refer_input_state['region_masks_in_prompts'] = [] indices_region_placeholder_in_prompt = find_indices_in_order(refer_input_state['region_placeholder_tokens'], prompt) refer_input_state['region_masks_in_prompts'] = [refer_input_state['region_masks'][iii] for iii in indices_region_placeholder_in_prompt] # Find regions in prompts and replace with real coordinates and region feature token. for region_ph_index, region_ph_i in enumerate(refer_input_state['region_placeholder_tokens']): prompt = prompt.replace(region_ph_i, '{} {}'.format(refer_input_state['region_coordinates'][region_ph_index], DEFAULT_REGION_FEA_TOKEN)) return prompt @spaces.GPU() def http_bot(state, model_selector, temperature, top_p, max_new_tokens, refer_input_state, request: gr.Request): # def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): start_tstamp = time.time() model_name = model_selector if state.skip_next: # This generate call is skipped due to invalid inputs yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return print("state messages: ", state.messages) if len(state.messages) == state.offset + 2: # First round of conversation # template_name = 'ferret_v1' template_name = 'ferret_gemma_instruct' # Below is LLaVA's original templates. # if "llava" in model_name.lower(): # if 'llama-2' in model_name.lower(): # template_name = "llava_llama_2" # elif "v1" in model_name.lower(): # if 'mmtag' in model_name.lower(): # template_name = "v1_mmtag" # elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): # template_name = "v1_mmtag" # else: # template_name = "llava_v1" # elif "mpt" in model_name.lower(): # template_name = "mpt" # else: # if 'mmtag' in model_name.lower(): # template_name = "v0_mmtag" # elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): # template_name = "v0_mmtag" # else: # template_name = "llava_v0" # elif "mpt" in model_name: # template_name = "mpt_text" # elif "llama-2" in model_name: # template_name = "llama_2" # else: # template_name = "vicuna_v1" new_state = conv_templates[template_name].copy() new_state.append_message(new_state.roles[0], state.messages[-2][1]) new_state.append_message(new_state.roles[1], None) state = new_state state.first_round = False # # Query worker address # controller_url = args.controller_url # ret = requests.post(controller_url + "/get_worker_address", # json={"model": model_name}) # worker_addr = ret.json()["address"] # logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") # No available worker # if worker_addr == "": # state.messages[-1][-1] = server_error_msg # yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) # return # Construct prompt prompt = state.get_prompt() if args.add_region_feature: prompt = format_region_prompt(prompt, refer_input_state) all_images = state.get_images(return_pil=True) all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] for image, hash in zip(all_images, all_image_hash): t = datetime.datetime.now() # fishy can remove it filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") if not os.path.isfile(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) image.save(filename) # Make requests pload = { "model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), "max_new_tokens": min(int(max_new_tokens), 1536), "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, "images": f'List of {len(state.get_images())} images: {all_image_hash}', } logger.info(f"==== request ====\n{pload}") if args.add_region_feature: pload['region_masks'] = refer_input_state['region_masks_in_prompts'] logger.info(f"==== add region_masks_in_prompts to request ====\n") pload['images'] = state.get_images() print(f'Input Prompt: {prompt}') print("all_image_hash", all_image_hash) state.messages[-1][-1] = "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 try: # Stream output stop = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2 #TODO: define inference and run function results, extracted_texts = inference_and_run( image_path=all_image_hash[0], # double check this prompt=prompt, model_path=model_name, conv_mode="ferret_gemma_instruct", # Default mode from the original function temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, stop=stop # Assuming we want to process the image ) # response = requests.post(worker_addr + "/worker_generate_stream", # headers=headers, json=pload, stream=True, timeout=10) response = extracted_texts logger.info(f"This is the respone {response}") for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): if chunk: data = json.loads(chunk.decode()) if data["error_code"] == 0: output = data["text"][len(prompt):].strip() output = post_process_code(output) state.messages[-1][-1] = output + "▌" yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 else: output = data["text"] + f" (error_code: {data['error_code']})" state.messages[-1][-1] = output yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return time.sleep(0.03) except requests.exceptions.RequestException as e: state.messages[-1][-1] = server_error_msg yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) return state.messages[-1][-1] = state.messages[-1][-1][:-1] yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 finish_tstamp = time.time() logger.info(f"{output}") with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "start": round(start_tstamp, 4), "finish": round(start_tstamp, 4), "state": state.dict(), "images": all_image_hash, "ip": request.client.host, } fout.write(json.dumps(data) + "\n") title_markdown = (""" # đŸĻĻ Ferret: Refer and Ground Anything Anywhere at Any Granularity """) # [[Project Page]](https://llava-vl.github.io) [[Paper]](https://arxiv.org/abs/2304.08485) tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only """) css = code_highlight_css + """ pre { white-space: pre-wrap; /* Since CSS 2.1 */ white-space: -moz-pre-wrap; /* Mozilla, since 1999 */ white-space: -pre-wrap; /* Opera 4-6 */ white-space: -o-pre-wrap; /* Opera 7 */ word-wrap: break-word; /* Internet Explorer 5.5+ */ } """ Instructions = ''' Instructions: 1. Select a 'Referring Input Type' 2. Draw on the image to refer to a region/point. 3. Copy the region id from 'Referring Input Type' to refer to a region in your chat. ''' from gradio.events import Dependency class ImageMask(gr.components.Image): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) def preprocess(self, x): return super().preprocess(x) from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING from gradio.blocks import Block if TYPE_CHECKING: from gradio.components import Timer def draw(input_mode, input, refer_input_state, refer_text_show, imagebox_refer): if type(input) == dict: image = deepcopy(input['image']) mask = deepcopy(input['mask']) else: mask = deepcopy(input) # W, H -> H, W, 3 image_new = np.asarray(image) img_height = image_new.shape[0] img_width = image_new.shape[1] # W, H, 4 -> H, W mask_new = np.asarray(mask)[:,:,0].copy() mask_new = torch.from_numpy(mask_new) mask_new = (F.interpolate(mask_new.unsqueeze(0).unsqueeze(0), (img_height, img_width), mode='bilinear') > 0) mask_new = mask_new[0, 0].transpose(1, 0).long() if len(refer_input_state['masks']) == 0: last_mask = torch.zeros_like(mask_new) else: last_mask = refer_input_state['masks'][-1] diff_mask = mask_new - last_mask if torch.all(diff_mask == 0): print('Init Uploading Images.') return (refer_input_state, refer_text_show, image) else: refer_input_state['masks'].append(mask_new) if input_mode == 'Point': nonzero_points = diff_mask.nonzero() nonzero_points_avg_x = torch.median(nonzero_points[:, 0]) nonzero_points_avg_y = torch.median(nonzero_points[:, 1]) sampled_coor = [nonzero_points_avg_x, nonzero_points_avg_y] # pdb.set_trace() cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height) elif input_mode == 'Box' or input_mode == 'Sketch': # pdb.set_trace() x1x2 = diff_mask.max(1)[0].nonzero()[:, 0] y1y2 = diff_mask.max(0)[0].nonzero()[:, 0] y1, y2 = y1y2.min(), y1y2.max() x1, x2 = x1x2.min(), x1x2.max() # pdb.set_trace() sampled_coor = [x1, y1, x2, y2] if input_mode == 'Box': cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height) else: cur_region_masks = generate_mask_for_feature(sampled_coor, raw_w=img_width, raw_h=img_height, mask=diff_mask) else: raise NotImplementedError(f'Input mode of {input_mode} is not Implemented.') # TODO(haoxuan): Hack img_size to be 224 here, need to make it a argument. if len(sampled_coor) == 2: point_x = int(VOCAB_IMAGE_W * sampled_coor[0] / img_width) point_y = int(VOCAB_IMAGE_H * sampled_coor[1] / img_height) cur_region_coordinates = f'[{int(point_x)}, {int(point_y)}]' elif len(sampled_coor) == 4: point_x1 = int(VOCAB_IMAGE_W * sampled_coor[0] / img_width) point_y1 = int(VOCAB_IMAGE_H * sampled_coor[1] / img_height) point_x2 = int(VOCAB_IMAGE_W * sampled_coor[2] / img_width) point_y2 = int(VOCAB_IMAGE_H * sampled_coor[3] / img_height) cur_region_coordinates = f'[{int(point_x1)}, {int(point_y1)}, {int(point_x2)}, {int(point_y2)}]' cur_region_id = len(refer_input_state['region_placeholder_tokens']) cur_region_token = DEFAULT_REGION_REFER_TOKEN.split(']')[0] + str(cur_region_id) + ']' refer_input_state['region_placeholder_tokens'].append(cur_region_token) refer_input_state['region_coordinates'].append(cur_region_coordinates) refer_input_state['region_masks'].append(cur_region_masks) assert len(refer_input_state['region_masks']) == len(refer_input_state['region_coordinates']) == len(refer_input_state['region_placeholder_tokens']) refer_text_show.append((cur_region_token, '')) # Show Parsed Referring. imagebox_refer = draw_box(sampled_coor, cur_region_masks, \ cur_region_token, imagebox_refer, input_mode) return (refer_input_state, refer_text_show, imagebox_refer) def build_demo(embed_mode): textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", visible=False, container=False) with gr.Blocks(title="FERRET", theme=gr.themes.Base(), css=css) as demo: state = gr.State() if not embed_mode: gr.Markdown(title_markdown) gr.Markdown(Instructions) with gr.Row(): with gr.Column(scale=4): with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "", interactive=True, show_label=False, container=False) original_image = gr.Image(type="pil", visible=False) image_process_mode = gr.Radio( ["Raw+Processor", "Crop", "Resize", "Pad"], value="Raw+Processor", label="Preprocess for non-square image", visible=False) # Added for any-format input. sketch_pad = ImageMask(label="Image & Sketch", type="pil", elem_id="img2text") refer_input_mode = gr.Radio( ["Point", "Box", "Sketch"], value="Point", label="Referring Input Type") refer_input_state = gr.State({'region_placeholder_tokens':[], 'region_coordinates':[], 'region_masks':[], 'region_masks_in_prompts':[], 'masks':[], }) refer_text_show = gr.HighlightedText(value=[], label="Referring Input Cache") imagebox_refer = gr.Image(type="pil", label="Parsed Referring Input") imagebox_output = gr.Image(type="pil", label='Output Vis') cur_dir = os.path.dirname(os.path.abspath(__file__)) # gr.Examples(examples=[ # # [f"{cur_dir}/examples/harry-potter-hogwarts.jpg", "What is in [region0]? And what do people use it for?"], # # [f"{cur_dir}/examples/ingredients.jpg", "What objects are in [region0] and [region1]?"], # # [f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image? And tell me the coordinates of mentioned objects."], # [f"{cur_dir}/examples/ferret.jpg", "What's the relationship between object [region0] and object [region1]?"], # [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here? Tell me the coordinates in response."], # [f"{cur_dir}/examples/flickr_9472793441.jpg", "Describe the image in details."], # # [f"{cur_dir}/examples/coco_000000281759.jpg", "What are the locations of the woman wearing a blue dress, the woman in flowery top, the girl in purple dress, the girl wearing green shirt?"], # [f"{cur_dir}/examples/room_planning.jpg", "How to improve the design of the given room?"], # [f"{cur_dir}/examples/make_sandwitch.jpg", "How can I make a sandwich with available ingredients?"], # [f"{cur_dir}/examples/bathroom.jpg", "What is unusual about this image?"], # [f"{cur_dir}/examples/kitchen.png", "Is the object a man or a chicken? Explain the reason."], # ], inputs=[sketch_pad, textbox]) with gr.Accordion("Parameters", open=False, visible=False) as parameter_row: temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) with gr.Column(scale=5): chatbot = gr.Chatbot(elem_id="chatbot", label="FERRET", visible=False).style(height=750) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=60): submit_btn = gr.Button(value="Submit", visible=False) with gr.Row(visible=False) as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) # flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False) #stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear history", interactive=False) location_btn = gr.Button(value="đŸĒ„ Show location", interactive=False) if not embed_mode: gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, location_btn, regenerate_btn, clear_btn] upvote_btn.click(upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, location_btn]) downvote_btn.click(downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, location_btn]) # flag_btn.click(flag_last_response, # [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) regenerate_btn.click(regenerate, [state, image_process_mode], [state, chatbot, textbox] + btn_list).then( http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state], [state, chatbot] + btn_list) clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox_output, original_image] + btn_list + \ [sketch_pad, refer_input_state, refer_text_show, imagebox_refer]) location_btn.click(show_location, [sketch_pad, chatbot], [imagebox_output, chatbot, location_btn]) #TODO: fix bug text and image not adding when clicking submit textbox.submit(add_text, [state, textbox, image_process_mode, original_image, sketch_pad], [state, chatbot, textbox, original_image] + btn_list ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state], [state, chatbot] + btn_list) submit_btn.click(add_text, [state, textbox, image_process_mode, original_image, sketch_pad], [state, chatbot, textbox, original_image] + btn_list ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens, refer_input_state], [state, chatbot] + btn_list) sketch_pad.edit( draw, inputs=[refer_input_mode, sketch_pad, refer_input_state, refer_text_show, imagebox_refer], outputs=[refer_input_state, refer_text_show, imagebox_refer], queue=True, ) if args.model_list_mode == "once": demo.load(load_demo, [url_params], [state, model_selector, chatbot, textbox, submit_btn, button_row, parameter_row], _js=get_window_url_params) elif args.model_list_mode == "reload": demo.load(load_demo_refresh_model_list, None, [state, model_selector, chatbot, textbox, submit_btn, button_row, parameter_row]) else: raise ValueError(f"Unknown model list mode: {args.model_list_mode}") return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument("--controller-url", type=str, default="http://localhost:21001") parser.add_argument("--concurrency-count", type=int, default=8) parser.add_argument("--model-list-mode", type=str, default="once", choices=["once", "reload"]) parser.add_argument("--share", action="store_true") parser.add_argument("--moderate", action="store_true") parser.add_argument("--embed", action="store_true") parser.add_argument("--add_region_feature", action="store_true") args = parser.parse_args() logger.info(f"args: {args}") models = get_model_list() logger.info(args) demo = build_demo(args.embed) demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False).launch( server_name=args.host, server_port=args.port, share=True)