jackrui commited on
Commit
e4b92b0
·
1 Parent(s): ac8cc4c

Upload 23 files

Browse files
anti_mammalian_cells_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.1525790244340896
3
+ 1,0.0760533288121223
4
+ 2,0.1492621749639511
5
+ 3,0.1219991967082023
6
+ 4,0.1047019213438034
7
+ 5,0.1363092511892318
8
+ 6,0.0930725336074829
9
+ 7,0.0958817079663276
10
+ 8,0.1338892579078674
11
+ 9,0.0932814627885818
antibacterial_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.4496227502822876
3
+ 1,0.3883198201656341
4
+ 2,0.3562843203544616
5
+ 3,0.298247218132019
6
+ 4,0.4385020732879638
7
+ 5,0.4251146614551544
8
+ 6,0.4341979026794433
9
+ 7,0.2845156490802765
10
+ 8,0.3436572253704071
11
+ 9,0.3261722922325134
antibiofilm_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0010717363329604
3
+ 1,0.0004516514600254
4
+ 2,0.000373906281311
5
+ 3,0.0007363113109022
6
+ 4,3.484930857666768e-05
7
+ 5,0.0003151300188619
8
+ 6,0.0011047080624848
9
+ 7,0.0007902314537204
10
+ 8,0.0006953802076168
11
+ 9,0.0003028515202458
anticancer_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.1051242128014564
3
+ 1,0.0922926068305969
4
+ 2,0.0994595140218734
5
+ 3,0.0824442058801651
6
+ 4,0.0792957991361618
7
+ 5,0.072281502187252
8
+ 6,0.0954500809311866
9
+ 7,0.0436021983623504
10
+ 8,0.0734143629670143
11
+ 9,0.0542230121791362
anticandida_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0272127203643322
3
+ 1,0.0113312294706702
4
+ 2,0.0158187840133905
5
+ 3,0.009648754261434
6
+ 4,0.0055011077784001
7
+ 5,0.011053130030632
8
+ 6,0.0015367614105343
9
+ 7,0.0144472680985927
10
+ 8,0.0127825438976287
11
+ 9,0.01068951562047
antifungal_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.1905697137117386
3
+ 1,0.2031028866767883
4
+ 2,0.1090441793203353
5
+ 3,0.1683354675769806
6
+ 4,0.2166067212820053
7
+ 5,0.1459249407052993
8
+ 6,0.1769887655973434
9
+ 7,0.123556450009346
10
+ 8,0.1815296709537506
11
+ 9,0.1819620281457901
antigram-negative_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.350467324256897
3
+ 1,0.2841741442680359
4
+ 2,0.1829241067171096
5
+ 3,0.2051365971565246
6
+ 4,0.2392990440130233
7
+ 5,0.250076562166214
8
+ 6,0.2709463834762573
9
+ 7,0.3161788880825043
10
+ 8,0.2945723533630371
11
+ 9,0.3661049306392669
antigram-positive_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.159443125128746
3
+ 1,0.175675019621849
4
+ 2,0.1815598160028457
5
+ 3,0.2127318680286407
6
+ 4,0.1937155872583389
7
+ 5,0.1311574429273605
8
+ 6,0.2421468198299408
9
+ 7,0.164654865860939
10
+ 8,0.2011494487524032
11
+ 9,0.1703412532806396
antihiv_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.001297834329307
3
+ 1,0.0147092789411544
4
+ 2,0.0280767139047384
5
+ 3,0.0188311729580163
6
+ 4,0.0316063687205314
7
+ 5,0.0002793179592117
8
+ 6,0.0394531860947608
9
+ 7,0.0352290384471416
10
+ 8,0.0161530096083879
11
+ 9,0.0399153716862201
antimalarial_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0002518623368814
3
+ 1,0.0011312034912407
4
+ 2,0.0008880426757968
5
+ 3,0.000496806751471
6
+ 4,0.0012301608221605
7
+ 5,0.0008584852912463
8
+ 6,0.0002407601568847
9
+ 7,0.0007967063575051
10
+ 8,0.0017376942560076
11
+ 9,0.0015417954418808
antimrsa_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0141361905261874
3
+ 1,0.0036627338267862
4
+ 2,0.0077131749130785
5
+ 3,0.0193892307579517
6
+ 4,0.0269243717193603
7
+ 5,0.011976390145719
8
+ 6,0.014747904613614
9
+ 7,0.0004355635028332
10
+ 8,0.0149725144729018
11
+ 9,0.001316599198617
antiparasitic_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0133489668369293
3
+ 1,0.013213163241744
4
+ 2,0.0098364204168319
5
+ 3,0.0098508978262543
6
+ 4,0.0078889606520533
7
+ 5,0.0084595428779721
8
+ 6,0.0112555986270308
9
+ 7,0.009906081482768
10
+ 8,0.0203342288732528
11
+ 9,0.0079685244709253
antiplasmodial_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0001347773213637
3
+ 1,0.0009133622515946
4
+ 2,9.326116014563011e-06
5
+ 3,0.0001174091376014
6
+ 4,3.263696635258384e-05
7
+ 5,8.079609688138589e-05
8
+ 6,0.002609065035358
9
+ 7,0.0026866241823881
10
+ 8,0.0004498923080973
11
+ 9,4.718012496596202e-05
antiprotozoal_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.003057480789721
3
+ 1,0.0040516722947359
4
+ 2,0.0025351848453283
5
+ 3,0.0045190006494522
6
+ 4,0.0001927299890667
7
+ 5,0.000583435583394
8
+ 6,0.0027324347756803
9
+ 7,1.884532684925944e-05
10
+ 8,0.0009825642919167
11
+ 9,0.0006906135822646
antitb_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.000651930575259
3
+ 1,0.0006640456267632
4
+ 2,0.007218284998089
5
+ 3,0.0021461523137986
6
+ 4,0.0012260759249329
7
+ 5,0.0005806351546198
8
+ 6,0.0083108721300959
9
+ 7,0.0032738070003688
10
+ 8,0.0002077087265206
11
+ 9,0.0016663705464452
antiviral_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.2781128883361816
3
+ 1,0.2598320543766022
4
+ 2,0.2447118610143661
5
+ 3,0.2298509180545807
6
+ 4,0.3155396282672882
7
+ 5,0.3103104829788208
8
+ 6,0.2029070407152176
9
+ 7,0.2685596346855163
10
+ 8,0.2826785147190094
11
+ 9,0.2654517292976379
anurandefense_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.06325114518404
3
+ 1,0.040009070187807
4
+ 2,0.0438646599650383
5
+ 3,0.0655954405665397
6
+ 4,0.0161753576248884
7
+ 5,0.0274067930877208
8
+ 6,0.0275417882949113
9
+ 7,0.0296123120933771
10
+ 8,0.1663894206285476
11
+ 9,0.0152728063985705
app.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from Bio import SeqIO
2
+ import os
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ import torch.nn.functional as F
7
+ from tqdm import tqdm
8
+ import numpy as np
9
+ import scipy.stats
10
+ import pathlib
11
+ import copy
12
+ import time
13
+ # from termcolor import colored
14
+ import vocab
15
+ from model import SequenceMultiTypeMultiCNN_1
16
+ from tools import EarlyStopping
17
+ from data_feature import Dataset
18
+ from sklearn.metrics import roc_auc_score
19
+ from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, matthews_corrcoef
20
+ import pandas as pd
21
+ import argparse
22
+ from tqdm import tqdm
23
+ from io import StringIO
24
+ import gradio as gr
25
+
26
+ device = torch.device("cpu")
27
+
28
+
29
+ def return_y(data_iter, net):
30
+ y_pred = []
31
+
32
+ all_seq = []
33
+ for batch in data_iter:
34
+ all_seq += batch['sequence']
35
+
36
+ AAI_feat = batch['seq_enc_AAI'].to(device)
37
+ onehot_feat = batch['seq_enc_onehot'].to(device)
38
+ BLOSUM62_feat = batch['seq_enc_BLOSUM62'].to(device)
39
+ PAAC_feat = batch['seq_enc_PAAC'].to(device)
40
+ # bert_feat=batch['seq_enc_bert'].to(device)
41
+ # bert_mask=batch['seq_enc_mask'].to(device)
42
+ outputs = net(AAI_feat, onehot_feat, BLOSUM62_feat, PAAC_feat)
43
+ # outputs = model(x)
44
+ y_pred.extend(outputs.cpu().numpy())
45
+
46
+ return y_pred, all_seq
47
+
48
+
49
+ def testing(batch_size, patience, n_epochs, testfasta, seq_len, cdhit_value, cv_number, save_file, model_file):
50
+ model = SequenceMultiTypeMultiCNN_1(d_input=[531, 21, 23, 3], vocab_size=21, seq_len=seq_len,
51
+ dropout=0.1, d_another_h=128, k_cnn=[2, 3, 4, 5, 6], d_output=1).to(device)
52
+
53
+ dataset = Dataset(fasta=testfasta)
54
+ test_loader = dataset.get_dataloader(batch_size=batch_size, max_length=seq_len)
55
+
56
+ model.load_state_dict(torch.load(model_file, map_location=torch.device('cpu'))['state_dict'])
57
+ model.eval()
58
+ with torch.no_grad():
59
+ new_y_pred, all_seq = return_y(test_loader, model)
60
+
61
+ final_y_pred = copy.deepcopy(new_y_pred)
62
+
63
+ final_y_pred = np.array(final_y_pred).T[0].tolist()
64
+
65
+ pred_dict = {'seq': all_seq, 'predictions': final_y_pred}
66
+ pred_df = pd.DataFrame(pred_dict)
67
+ pred_df.to_csv(save_file, index=None)
68
+
69
+
70
+ all_function_names = ['antibacterial', 'antigram-positive', 'antigram-negative', 'antifungal', 'antiviral', \
71
+ 'anti_mammalian_cells', 'antihiv', 'antibiofilm', 'anticancer', 'antimrsa', 'antiparasitic', \
72
+ 'hemolytic', 'chemotactic', 'antitb', 'anurandefense', 'cytotoxic', \
73
+ 'endotoxin', 'insecticidal', 'antimalarial', 'anticandida', 'antiplasmodial', 'antiprotozoal']
74
+
75
+
76
+ # os.environ['CUDA_LAUNCH_BLOCKING'] = 1
77
+
78
+
79
+ def predict(test_file):
80
+ # fas_id = []
81
+ fas_seq = [test_file]
82
+ # for seq_record in SeqIO.parse(test_file, "fasta"):
83
+ # fas_seq.append(str(seq_record.seq).upper())
84
+ # fas_id.append(str(seq_record.id))
85
+
86
+ seq_len = 200
87
+ batch_size = 32
88
+ cdhit_value = 40
89
+ vocab_size = len(vocab.AMINO_ACIDS)
90
+
91
+ epochs = 300
92
+ temp_save_AMP_filename = '%s ' % (time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()))
93
+ for cv_number in tqdm(range(10)):
94
+ testing(testfasta=fas_seq,
95
+ model_file=f'textcnn_cdhit_40_{cv_number}.pth.tar',
96
+ save_file=f'{temp_save_AMP_filename}_{cv_number}.csv',
97
+ batch_size=batch_size, patience=10, n_epochs=epochs, seq_len=seq_len, cdhit_value=cdhit_value
98
+ , cv_number=cv_number)
99
+
100
+ pred_prob = []
101
+ for cv_number in tqdm(range(10)):
102
+ df = pd.read_csv(f'{temp_save_AMP_filename}_{cv_number}.csv')
103
+ data = df.values.tolist()
104
+ temp = []
105
+ for i in tqdm(range(len(data))):
106
+ temp.append(data[i][1])
107
+ pred_prob.append(temp)
108
+ pred_prob = np.average(pred_prob, 0)
109
+ pred_AMP_label = []
110
+ for i in tqdm(range(len(pred_prob))):
111
+ if pred_prob[i] > 0.5:
112
+ pred_AMP_label.append('Yes')
113
+ else:
114
+ pred_AMP_label.append('No')
115
+
116
+ for function_name in all_function_names:
117
+ temp_dir_list = os.listdir('tmp_save')
118
+ if function_name not in temp_dir_list:
119
+ os.mkdir( function_name)
120
+ for cv_number in tqdm(range(10)):
121
+ testing(testfasta=fas_seq,
122
+ model_file=f'{function_name}textcnn_cdhit_100_0.pth.tar',
123
+ save_file=f'{function_name}{temp_save_AMP_filename}_{cv_number}.csv',
124
+ batch_size=batch_size, patience=10, n_epochs=epochs, seq_len=seq_len, cdhit_value=cdhit_value
125
+ , cv_number=cv_number)
126
+
127
+ all_function_pred_label = []
128
+ for function_name in all_function_names:
129
+
130
+ function_threshold_df = pd.read_csv(f'{function_name}_yd_threshold.csv', index_col=0)
131
+ function_thresholds = function_threshold_df.values[:, 0]
132
+
133
+ each_function_data = []
134
+
135
+ for cv_number in tqdm(range(10)):
136
+ df = pd.read_csv(f'{function_name}{temp_save_AMP_filename}_{cv_number}.csv')
137
+ data = df.values.tolist()
138
+ temp = []
139
+ for i in tqdm(range(len(data))):
140
+
141
+ if data[i][1] > function_thresholds[cv_number]:
142
+ temp.append(1)
143
+ else:
144
+ temp.append(0)
145
+ each_function_data.append(temp)
146
+ each_function_data = np.average(each_function_data, 0)
147
+ pred_each_function_label = []
148
+ for i in tqdm(range(len(each_function_data))):
149
+ if each_function_data[i] > 0.5:
150
+ pred_each_function_label.append('Yes')
151
+ else:
152
+ pred_each_function_label.append('No')
153
+
154
+ all_function_pred_label.append(pred_each_function_label)
155
+
156
+ all_function_cols = ['antibacterial', 'anti-Gram-positive', 'anti-Gram-negative', 'antifungal', 'antiviral', \
157
+ 'anti-mammalian-cells', 'anti-HIV', 'antibiofilm', 'anticancer', 'anti-MRSA', 'antiparasitic', \
158
+ 'hemolytic', 'chemotactic', 'anti-TB', 'anurandefense', 'cytotoxic', \
159
+ 'endotoxin', 'insecticidal', 'antimalarial', 'anticandida', 'antiplasmodial', 'antiprotozoal']
160
+
161
+ pred_contents_dict = {'sequence': fas_seq, 'AMP': pred_AMP_label}
162
+ for i in tqdm(range(len(all_function_cols))):
163
+ pred_contents_dict[all_function_cols[i]] = all_function_pred_label[i]
164
+
165
+ pred_contents_df = pd.DataFrame(pred_contents_dict)
166
+
167
+ for function_name in all_function_names:
168
+ for cv_number in tqdm(range(10)):
169
+ os.remove(f'{function_name}{temp_save_AMP_filename}_{cv_number}.csv')
170
+ for cv_number in tqdm(range(10)):
171
+ os.remove(f'{temp_save_AMP_filename}_{cv_number}.csv')
172
+ result_csv = pd.DataFrame({ 'Prediction': pred_AMP_label})
173
+ result_csv_string = StringIO()
174
+ result_csv.to_csv(result_csv_string, index=False)
175
+ result_csv_string.seek(0)
176
+
177
+ return pred_contents_df
178
+ # master.insert_one({'Test Report': res_val})
179
+
180
+
181
+ if __name__ == '__main__':
182
+ pd.set_option('display.max_columns', None)
183
+ pd.set_option('display.max_colwidth', -1)
184
+
185
+ # parser = argparse.ArgumentParser(description='proposed model')
186
+
187
+ # parser.add_argument('-output_file_name', default='prediction_output', type=str)
188
+
189
+ # parser.add_argument('-test_fasta_file', default='examples/samples.fasta', type=str)
190
+ # args = parser.parse_args()
191
+
192
+ # output_file_name = args.output_file_name
193
+ # test_file = args.test_fasta_file
194
+ # flag = 0
195
+ # for seq_record in SeqIO.parse(test_file, "fasta"):
196
+ # temp_id = str(seq_record.id)
197
+ # temp_seq = str(seq_record.seq)
198
+ # if len(set(temp_seq.upper()).difference(set('ACDEFGHIKLMNPQRSTVWY'))) > 0:
199
+ # flag = 1
200
+ # print('input error: have unusual amino acids')
201
+ # break
202
+
203
+ # if flag == 0:
204
+ # pred_df = predict(test_file)
205
+ # pred_df.to_csv(output_file_name + '.csv')
206
+ with gr.Blocks() as demo:
207
+ gr.Markdown(
208
+ """
209
+
210
+ # Welcome to Antimicrobial Peptide Attribute Prediction Model
211
+
212
+ This is an online model for predicting attributes of antimicrobial peptides. Here, you can simply input a protein sequence, such as QGLFFLGAKLFYLLTLFL, and the model will generate predictions for various attributes.
213
+
214
+ Please note that due to server limitations, large-scale predictions may not be supported online. If you have a need for large-scale predictions, I can provide you with the code or assist you with the predictions directly, free of charge. Feel free to contact me for any inquiries:
215
+
216
217
+
218
+ Let's get started!
219
+
220
+ """)
221
+
222
+ iface = gr.Interface(fn=predict, inputs="text", outputs="text")
223
+ demo.launch(server_name='127.0.0.1', server_port=7788)
chemotactic_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0060868617147207
3
+ 1,9.572660201229156e-05
4
+ 2,0.0008185741025954
5
+ 3,9.364341531181708e-05
6
+ 4,0.0002393810573266
7
+ 5,0.0022423025220632
8
+ 6,0.0084763616323471
9
+ 7,0.0027119170408695
10
+ 8,3.411575744394213e-05
11
+ 9,0.0029187819454818
cytotoxic_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0080689117312431
3
+ 1,0.0061783450655639
4
+ 2,0.0107948025688529
5
+ 3,0.012933705933392
6
+ 4,0.0074981972575187
7
+ 5,0.000167274614796
8
+ 6,0.0103498054668307
9
+ 7,0.0073629915714263
10
+ 8,0.0012240845244377
11
+ 9,0.0001633148203836
endotoxin_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0015385682927444
3
+ 1,0.0006175263551995
4
+ 2,0.0014237745199352
5
+ 3,0.0001627063029445
6
+ 4,0.001902371761389
7
+ 5,0.0006754832575097
8
+ 6,0.0008196207927539
9
+ 7,0.0021725625265389
10
+ 8,0.0004220827540848
11
+ 9,0.0006830523489043
hemolytic_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0221392400562763
3
+ 1,0.0695223584771156
4
+ 2,0.0811304897069931
5
+ 3,0.0350562147796154
6
+ 4,0.0791068449616432
7
+ 5,0.0475858710706234
8
+ 6,0.0865858867764473
9
+ 7,0.0352442301809787
10
+ 8,0.0357107110321521
11
+ 9,0.0703328251838684
insecticidal_yd_threshold.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,threshold
2
+ 0,0.0042725815437734
3
+ 1,0.0039733867160975
4
+ 2,0.0020466167479753
5
+ 3,0.0001893758308142
6
+ 4,0.005238143261522
7
+ 5,0.003733716905117
8
+ 6,0.0044953846372663
9
+ 7,0.0027529671788215
10
+ 8,0.0010488195111975
11
+ 9,0.0006791127379983