import os os.system('git clone https://github.com/facebookresearch/detectron2.git') os.system('pip install -e detectron2') os.system("git clone https://github.com/microsoft/unilm.git") os.system("sed -i 's/from collections import Iterable/from collections.abc import Iterable/' unilm/dit/object_detection/ditod/table_evaluation/data_structure.py") os.system("curl -LJ -o publaynet_dit-b_cascade.pth 'https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth?sv=2022-11-02&ss=b&srt=o&sp=r&se=2033-06-08T16:48:15Z&st=2023-06-08T08:48:15Z&spr=https&sig=a9VXrihTzbWyVfaIDlIT1Z0FoR1073VB0RLQUMuudD4%3D'") import sys sys.path.append("unilm") sys.path.append("detectron2") import cv2 from unilm.dit.object_detection.ditod import add_vit_config import torch from detectron2.config import CfgNode as CN from detectron2.config import get_cfg from detectron2.utils.visualizer import ColorMode, Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor from huggingface_hub import hf_hub_download import gradio as gr # Step 1: instantiate config cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file("cascade_dit_base.yml") # Step 2: add model weights URL to config filepath = hf_hub_download(repo_id="Sebas6k/DiT_weights", filename="publaynet_dit-b_cascade.pth", repo_type="model") cfg.MODEL.WEIGHTS = filepath # Step 3: set device cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Step 4: define model predictor = DefaultPredictor(cfg) def analyze_image(img): img = img.astype("float32") md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) if cfg.DATASETS.TEST[0]=='icdar2019_test': md.set(thing_classes=["table"]) else: md.set(thing_classes=["text","title","list","table","figure"]) output = predictor(img)["instances"] v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) result = v.draw_instance_predictions(output.to("cpu")) result_image = result.get_image()[:, :, ::-1] return result_image title = "Document Layout Analysis" description = "Demo" article = "" # examples =[['publaynet_example.jpeg']] examples = [ ['publaynet_example.jpeg'], ['PMC1064093_00000.jpg'], ['PMC1064139_00005.jpg'], ['PMC1079928_00003.jpg'], ['PMC1097753_00002.jpg'] ] css = ".output-image, .input-image, .image-preview {height: 600px !important}" iface = gr.Interface(fn=analyze_image, inputs=gr.Image(type="numpy", label="document image"), outputs=gr.Image(type="numpy", label="annotated document"), title=title, description=description, examples=examples, article=article, css=css) iface.queue(5).launch()