import gradio as gr import numpy as np import os from PIL import Image from transformers import pipeline def predict_image(image): pipe = pipeline("image-classification", model="itsTomLie/Jaundice_Classifier") if isinstance(image, np.ndarray): image = Image.fromarray(image.astype('uint8')) elif isinstance(image, str): image = Image.open(image) result = pipe(image) label = result[0]['label'] confidence = result[0]['score'] print(f"Prediction: {label}, Confidence: {confidence}") return label, confidence example_images = [ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) ] interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="numpy", label="Upload an Image"), outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence")], examples=example_images ) interface.launch()