# Modified from https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py import os gpt_path = os.environ.get( "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" ) sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") cnhubert_base_path = os.environ.get( "cnhubert_base_path", "pretrained_models/chinese-hubert-base" ) bert_path = os.environ.get( "bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" ) if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] import gradio as gr import librosa import numpy as np import torch from transformers import AutoModelForMaskedLM, AutoTokenizer from feature_extractor import cnhubert cnhubert.cnhubert_base_path = cnhubert_base_path from time import time as ttime import datetime from AR.models.t2s_lightning_module import Text2SemanticLightningModule from module.mel_processing import spectrogram_torch from module.models import SynthesizerTrn from my_utils import load_audio from text import cleaned_text_to_sequence from text.cleaner import clean_text device = "cuda" if torch.cuda.is_available() else "cpu" is_half = eval( os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") ) tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) if is_half == True: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) # bert_model=bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) # if(is_half==True):phone_level_feature=phone_level_feature.half() return phone_level_feature.T n_semantic = 1024 dict_s2 = torch.load(sovits_path, map_location="cpu") hps = dict_s2["config"] class DictToAttrRecursive: def __init__(self, input_dict): for key, value in input_dict.items(): if isinstance(value, dict): # 如果值是字典,递归调用构造函数 setattr(self, key, DictToAttrRecursive(value)) else: setattr(self, key, value) hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] ssl_model = cnhubert.get_model() if is_half == True: ssl_model = ssl_model.half().to(device) else: ssl_model = ssl_model.to(device) vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ) if is_half == True: vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) hz = 50 max_sec = config["data"]["max_sec"] # t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if is_half == True: t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) def get_spepc(hps, filename): audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch( audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) return spec dict_language = {"Chinese": "zh", "English": "en", "Japanese": "ja"} def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): print(f"---{datetime.datetime.now()}---") print(f"ref_wav_path: {ref_wav_path}") print(f"prompt_text: {prompt_text}") print(f"prompt_language: {prompt_language}") print(f"text: {text}") print(f"text_language: {text_language}") if len(prompt_text) > 100 or len(text) > 100: print("Input text is limited to 100 characters.") return "Input text is limited to 100 characters.", None t0 = ttime() prompt_text = prompt_text.strip("\n") prompt_language, text = prompt_language, text.strip("\n") with torch.no_grad(): wav16k, _ = librosa.load(ref_wav_path, sr=16000) # 派蒙 # length of wav16k in sec should be in 60s if len(wav16k) > 16000 * 60: print("Input audio is limited to 60 seconds.") return "Input audio is limited to 60 seconds.", None wav16k = wav16k[: int(hps.data.sampling_rate * max_sec)] wav16k = torch.from_numpy(wav16k) if is_half == True: wav16k = wav16k.half().to(device) else: wav16k = wav16k.to(device) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state" ].transpose( 1, 2 ) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] t1 = ttime() prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) phones1 = cleaned_text_to_sequence(phones1) texts = text.split("\n") audio_opt = [] zero_wav = np.zeros( int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32, ) for text in texts: phones2, word2ph2, norm_text2 = clean_text(text, text_language) phones2 = cleaned_text_to_sequence(phones2) if prompt_language == "zh": bert1 = get_bert_feature(norm_text1, word2ph1).to(device) else: bert1 = torch.zeros( (1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) if text_language == "zh": bert2 = get_bert_feature(norm_text2, word2ph2).to(device) else: bert2 = torch.zeros((1024, len(phones2))).to(bert1) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) t2 = ttime() with torch.no_grad(): # pred_semantic = t2s_model.model.infer( pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, prompt, bert, # prompt_phone_len=ph_offset, top_k=config["inference"]["top_k"], early_stop_num=hz * max_sec, ) t3 = ttime() # print(pred_semantic.shape,idx) pred_semantic = pred_semantic[:, -idx:].unsqueeze( 0 ) # .unsqueeze(0)#mq要多unsqueeze一次 refer = get_spepc(hps, ref_wav_path) # .to(device) if is_half == True: refer = refer.half().to(device) else: refer = refer.to(device) # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] audio = ( vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer ) .detach() .cpu() .numpy()[0, 0] ) ###试试重建不带上prompt部分 audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) return "Success! time: %.3f\t%.3f\t%.3f\t%.3f" % ( t1 - t0, t2 - t1, t3 - t2, t4 - t3, ), (hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)) initial_md = """ # GPT-SoVITS Zero-shot TTS Demo https://github.com/RVC-Boss/GPT-SoVITS *I'm not the author of this model, and I just borrowed it to make a demo.* - *Input text is limited to 100 characters.* - *Input audio is limited to 60 seconds.* **License** https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE This software is open source under the MIT License, the author does not have any control over the software, and the user is solely responsible for the use of the software and for the distribution of the sound derived from the software. If you do not agree with these terms and conditions, you may not use or reference any of the code or files in the package. """ with gr.Blocks(title="GPT-SoVITS Zero-shot TTS Demo") as app: gr.Markdown(initial_md) gr.Markdown("## Upload reference audio") with gr.Row(): inp_ref = gr.Audio(label="Reference audio", type="filepath") prompt_text = gr.Textbox(label="Transcription of reference audio") prompt_language = gr.Dropdown( label="Language of reference audio", choices=["Chinese", "English", "Japanese"], value="Japanese", ) gr.Markdown("## Text to synthesize") with gr.Row(): text = gr.Textbox(label="Text to synthesize") text_language = gr.Dropdown( label="Language of text", choices=["Chinese", "English", "Japanese"], value="Japanese", ) inference_button = gr.Button("Synthesize", variant="primary") with gr.Column(): info = gr.Textbox(label="Info") output = gr.Audio(label="Result") inference_button.click( get_tts_wav, [inp_ref, prompt_text, prompt_language, text, text_language], [info, output], ) app.queue(max_size=10) app.launch(inbrowser=True)