from fastai.vision.all import * import gradio as gr learn = load_learner('model.pkl') categories = {'Dog', 'Cat', 'Bird', 'Koala'} def predict_image(img): pred, pred_idx, probs = learn.predict(img) probs_float = probs[0].item() if probs_float > 0.1: return dict(zip(categories, map(float, probs))) else: return "Not a dog, cat, bird, or koala" image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['dog.jfif', 'cat.jfif', 'bird.jfif', 'koala.jfif'] intf = gr.Interface(fn=predict_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)