Ishaan Shah
commited on
Commit
·
051dc03
1
Parent(s):
997488c
test
Browse files
main.py
CHANGED
@@ -15,6 +15,8 @@ import textwrap
|
|
15 |
from flask_cors import CORS
|
16 |
import socket;
|
17 |
|
|
|
|
|
18 |
app = Flask(__name__)
|
19 |
cors = CORS(app)
|
20 |
|
@@ -66,40 +68,45 @@ def default():
|
|
66 |
return "Hello World!"
|
67 |
|
68 |
|
69 |
-
if __name__ == '__main__':
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
94 |
-
qa_chain = RetrievalQA.from_chain_type(llm=turbo_llm,
|
95 |
-
chain_type="stuff",
|
96 |
-
retriever=retriever,
|
97 |
-
return_source_documents=True)
|
98 |
-
qa_chain.combine_documents_chain.llm_chain.prompt.messages[0].prompt.template= """
|
99 |
-
Use only the following pieces of context and think step by step to answer. Answer the users question only if they are related to the context given.
|
100 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer. Make your answer very detailed and long.
|
101 |
-
Use bullet points to explain when required.
|
102 |
-
Use only text found in the context as your knowledge source for the answer.
|
103 |
-
----------------
|
104 |
-
{context}"""
|
105 |
-
app.run(host=ip, port=5000)
|
|
|
15 |
from flask_cors import CORS
|
16 |
import socket;
|
17 |
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
app = Flask(__name__)
|
21 |
cors = CORS(app)
|
22 |
|
|
|
68 |
return "Hello World!"
|
69 |
|
70 |
|
71 |
+
# if __name__ == '__main__':
|
72 |
+
# ip=get_local_ip()
|
73 |
+
# os.environ["OPENAI_API_KEY"] = "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"
|
74 |
+
# # Embed and store the texts
|
75 |
+
# # if(torch.cuda.is_available() == False):
|
76 |
+
# # print("No GPU available")
|
77 |
+
# # exit(1)
|
78 |
|
79 |
+
# torch.cuda.empty_cache()
|
80 |
+
# torch.max_split_size_mb = 100
|
81 |
+
# instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl",
|
82 |
+
# model_kwargs={"device": "cpu"})
|
83 |
+
# # Supplying a persist_directory will store the embeddings on disk
|
84 |
+
# persist_directory = 'db'
|
85 |
+
# vectordb2 = Chroma(persist_directory=persist_directory,
|
86 |
+
# embedding_function=instructor_embeddings,
|
87 |
+
# )
|
88 |
+
# retriever = vectordb2.as_retriever(search_kwargs={"k": 3})
|
89 |
+
# vectordb2.persist()
|
90 |
+
|
91 |
+
# # Set up the turbo LLM
|
92 |
+
# turbo_llm = ChatOpenAI(
|
93 |
+
# temperature=0,
|
94 |
+
# model_name='gpt-3.5-turbo'
|
95 |
+
# )
|
96 |
+
# qa_chain = RetrievalQA.from_chain_type(llm=turbo_llm,
|
97 |
+
# chain_type="stuff",
|
98 |
+
# retriever=retriever,
|
99 |
+
# return_source_documents=True)
|
100 |
+
# qa_chain.combine_documents_chain.llm_chain.prompt.messages[0].prompt.template= """
|
101 |
+
# Use only the following pieces of context and think step by step to answer. Answer the users question only if they are related to the context given.
|
102 |
+
# If you don't know the answer, just say that you don't know, don't try to make up an answer. Make your answer very detailed and long.
|
103 |
+
# Use bullet points to explain when required.
|
104 |
+
# Use only text found in the context as your knowledge source for the answer.
|
105 |
+
# ----------------
|
106 |
+
# {context}"""
|
107 |
+
# app.run(host=ip, port=5000)
|
108 |
|
109 |
+
def greet(name):
|
110 |
+
return "Hello " + name + "!!"
|
111 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
112 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|