Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import BertTokenizer
|
4 |
+
from transformers import TFBertForSequenceClassification
|
5 |
+
|
6 |
+
|
7 |
+
# Fungsi untuk memuat model BERT dan tokenizer
|
8 |
+
PRE_TRAINED_MODEL = 'indobenchmark/indobert-base-p2'
|
9 |
+
bert_tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL)
|
10 |
+
bert_model = TFBertForSequenceClassification.from_pretrained(PRE_TRAINED_MODEL, num_labels=2)
|
11 |
+
bert_model.load_weights('model.h5')
|
12 |
+
|
13 |
+
|
14 |
+
def predict_sentiment(text):
|
15 |
+
input_ids = tf.constant(bert_tokenizer.encode(text, add_special_tokens=True))[None, :] # Menambahkan token khusus [CLS] dan [SEP]
|
16 |
+
logits = bert_model(input_ids)[0]
|
17 |
+
probabilities = tf.nn.softmax(logits, axis=1)
|
18 |
+
sentiment = tf.argmax(probabilities, axis=1)
|
19 |
+
return sentiment.numpy()[0]
|
20 |
+
|
21 |
+
|
22 |
+
# Judul aplikasi
|
23 |
+
st.title('Prediksi Sentimen menggunakan BERT')
|
24 |
+
|
25 |
+
# Input teks
|
26 |
+
text = st.text_area('Masukkan teks', '')
|
27 |
+
|
28 |
+
# Tombol untuk memprediksi sentimen
|
29 |
+
if st.button('Prediksi'):
|
30 |
+
if text.strip() == '':
|
31 |
+
st.warning('Masukkan teks terlebih dahulu.')
|
32 |
+
else:
|
33 |
+
sentiment = predict_sentiment(text)
|
34 |
+
if sentiment == 0:
|
35 |
+
st.error('Sentimen: Negatif')
|
36 |
+
else:
|
37 |
+
st.success('Sentimen: Positif')
|