from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS CHUNK_SIZE = 1024 MAX_CHUNKS = 500 def split_text_into_chunks(text, chunk_size=CHUNK_SIZE): """ Splits text into smaller chunks. Args: text (str): Text to be split. chunk_size (int, optional): Size of each chunk. Defaults to 4,000. Returns: list[str]: List of text chunks. """ chunks = [] for i in range(0, len(text), chunk_size): chunks.append(text[i : i + chunk_size]) return chunks def generate_chunks(inp_str, max_chunks=MAX_CHUNKS): """ Chunk text into smaller pieces.""" inp_str = inp_str.replace('.', '.') inp_str = inp_str.replace('?', '?') inp_str = inp_str.replace('!', '!') sentences = inp_str.split('') current_chunk = 0 chunks = [] for sentence in sentences: if len(chunks) == current_chunk + 1: if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunks: chunks[current_chunk].extend(sentence.split(' ')) else: current_chunk += 1 chunks.append(sentence.split(' ')) else: chunks.append(sentence.split(' ')) return [' '.join(chunk) for chunk in chunks] def pdf_to_text(pdf_path): """ Converts a PDF file to text. Args: pdf_path (str): Path to the PDF file. Returns: str: Extracted text from the PDF file. """ reader = PdfReader(pdf_path) extracted_texts = [page.extract_text() for page in reader.pages] return " ".join(extracted_texts).replace("\n", " ") def process_text(text): """ Split the text into chunks using Langchain's CharacterTextSplitter """ text_splitter = CharacterTextSplitter( separator="\n", chunk_size=CHUNK_SIZE, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) # Convert the chunks of text into embeddings to form a knowledge base embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') knowledgeBase = FAISS.from_texts(chunks, embeddings) return knowledgeBase