File size: 19,201 Bytes
b3d1df8
978a6ce
2cce526
 
 
 
 
 
 
 
 
81beee5
b3d1df8
 
3f4b577
b3d1df8
183c824
d13902f
 
 
 
3f4b577
2cce526
0e04908
3f4b577
2cce526
 
 
 
81beee5
978a6ce
beebdff
3f4b577
beebdff
 
 
 
d13902f
 
 
 
 
 
 
 
beebdff
 
d13902f
 
 
 
 
 
 
 
beebdff
 
 
 
 
 
 
 
 
 
 
f420a80
3f4b577
f420a80
 
 
 
 
 
3f4b577
f420a80
 
 
 
3f4b577
 
 
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4b577
f420a80
 
 
 
 
 
 
3f4b577
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4b577
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81beee5
d13902f
183c824
81beee5
3f4b577
d13902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978a6ce
f420a80
d13902f
183c824
d13902f
 
 
f420a80
d13902f
 
81beee5
 
 
d13902f
 
 
 
 
183c824
d13902f
 
 
 
 
 
 
 
183c824
f420a80
 
0e04908
f420a80
d13902f
 
2cce526
d13902f
 
81beee5
d13902f
 
81beee5
d13902f
81beee5
 
 
 
 
d13902f
 
 
 
 
 
 
 
 
 
 
81beee5
f420a80
d13902f
f420a80
81beee5
f420a80
d13902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f420a80
d13902f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f420a80
 
3f4b577
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4b577
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4b577
f420a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13902f
 
f420a80
 
 
d13902f
f420a80
3f4b577
b3d1df8
 
 
 
 
 
 
 
 
 
 
f420a80
 
81beee5
f420a80
81beee5
3f4b577
 
f420a80
 
 
 
 
 
f7af1db
3f4b577
2cce526
 
f420a80
d13902f
2cce526
f420a80
2cce526
d13902f
81beee5
 
 
b3d1df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cce526
 
 
 
 
183c824
2cce526
 
81beee5
2cce526
 
 
f420a80
b3d1df8
 
 
 
 
 
 
f420a80
b3d1df8
 
2cce526
 
 
b3d1df8
d13902f
 
 
 
b3d1df8
183c824
2cce526
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# app.py - Voice Analysis System with Clinical Interpretation
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import librosa
import numpy as np
import plotly.graph_objects as go
import warnings
import os
from scipy.stats import kurtosis, skew
from anthropic import Anthropic
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Get API tokens
ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY', 'your_anthropic_api_key')
HUGGINGFACE_TOKEN = os.getenv('HUGGINGFACE_TOKEN', 'your_huggingface_api_token')

# Suppress warnings
warnings.filterwarnings('ignore')

# Initialize global variables
processor = None
whisper_model = None
emotion_tokenizer = None
emotion_model = None
clinical_analyzer = None

def load_models():
    """Initialize and load required ML models."""
    global processor, whisper_model, emotion_tokenizer, emotion_model
    
    try:
        print("Loading Whisper model...")
        processor = WhisperProcessor.from_pretrained(
            "openai/whisper-tiny",
            use_auth_token=HUGGINGFACE_TOKEN
        )
        whisper_model = WhisperForConditionalGeneration.from_pretrained(
            "openai/whisper-tiny",
            use_auth_token=HUGGINGFACE_TOKEN
        )
        
        print("Loading emotion model...")
        emotion_tokenizer = AutoTokenizer.from_pretrained(
            "j-hartmann/emotion-english-distilroberta-base",
            use_auth_token=HUGGINGFACE_TOKEN
        )
        emotion_model = AutoModelForSequenceClassification.from_pretrained(
            "j-hartmann/emotion-english-distilroberta-base",
            use_auth_token=HUGGINGFACE_TOKEN
        )
        
        device = "cpu"
        whisper_model.to(device)
        emotion_model.to(device)
        
        print("Models loaded successfully!")
        return True
    except Exception as e:
        print(f"Error loading models: {str(e)}")
        return False

def extract_prosodic_features(waveform, sr):
    """Extract voice features from audio data."""
    try:
        if waveform is None or len(waveform) == 0:
            return None
            
        features = {}
        
        # Pitch analysis
        try:
            pitches, magnitudes = librosa.piptrack(
                y=waveform, 
                sr=sr,
                fmin=50,
                fmax=2000,
                n_mels=128,
                hop_length=512,
                win_length=2048
            )
            
            f0_contour = [
                pitches[magnitudes[:, t].argmax(), t]
                for t in range(pitches.shape[1])
                if 50 <= pitches[magnitudes[:, t].argmax(), t] <= 2000
            ]
            
            if f0_contour:
                features['pitch_mean'] = float(np.mean(f0_contour))
                features['pitch_std'] = float(np.std(f0_contour))
                features['pitch_range'] = float(np.ptp(f0_contour))
            else:
                features['pitch_mean'] = 160.0
                features['pitch_std'] = 0.0
                features['pitch_range'] = 0.0
                
        except Exception as e:
            print(f"Pitch extraction error: {e}")
            features.update({'pitch_mean': 160.0, 'pitch_std': 0.0, 'pitch_range': 0.0})
        
        # Energy analysis
        try:
            rms = librosa.feature.rms(
                y=waveform,
                frame_length=2048,
                hop_length=512,
                center=True
            )[0]
            
            features.update({
                'energy_mean': float(np.mean(rms)),
                'energy_std': float(np.std(rms)),
                'energy_range': float(np.ptp(rms))
            })
        except Exception as e:
            print(f"Energy extraction error: {e}")
            features.update({'energy_mean': 0.02, 'energy_std': 0.0, 'energy_range': 0.0})
        
        # Rhythm analysis
        try:
            onset_env = librosa.onset.onset_strength(
                y=waveform,
                sr=sr,
                hop_length=512,
                aggregate=np.median
            )
            
            tempo = librosa.beat.tempo(
                onset_envelope=onset_env,
                sr=sr,
                hop_length=512,
                aggregate=None
            )[0]
            
            features['tempo'] = float(tempo) if 40 <= tempo <= 240 else 120.0
            
        except Exception as e:
            print(f"Rhythm extraction error: {e}")
            features['tempo'] = 120.0
        
        return features
    except Exception as e:
        print(f"Feature extraction failed: {e}")
        return None

class ClinicalVoiceAnalyzer:
    """Analyze voice characteristics for psychological indicators."""
    
    def __init__(self):
        """Initialize analyzer with API and reference ranges."""
        try:
            if not ANTHROPIC_API_KEY:
                raise ValueError("ANTHROPIC_API_KEY not found in environment variables")
            
            self.anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
            self.model = "claude-3-opus-20240229"
            
            self.reference_ranges = {
                'pitch': {'min': 150, 'max': 400},
                'tempo': {'min': 90, 'max': 130},
                'energy': {'min': 0.01, 'max': 0.05}
            }
            print("Clinical analyzer ready")
        except Exception as e:
            print(f"Error initializing clinical analyzer: {e}")
            self.anthropic = None

    def analyze_voice_metrics(self, features, emotions, transcription):
        """Generate clinical insights from voice and emotion data."""
        try:
            if not self.anthropic:
                return self._generate_backup_analysis(features, emotions)

            prompt = self._create_clinical_prompt(features, emotions, transcription)
            print("Sending analysis request to Anthropic API...")
            
            response = self.anthropic.messages.create(
                model=self.model,
                max_tokens=1000,
                messages=[{
                    "role": "user",
                    "content": prompt
                }],
                temperature=0.7
            )
            
            if response and hasattr(response, 'content'):
                print("Received response from Anthropic API")
                return self._format_analysis(response.content)
            else:
                print("No valid response from API")
                return self._generate_backup_analysis(features, emotions)
                
        except Exception as e:
            print(f"Clinical analysis error: {e}")
            return self._generate_backup_analysis(features, emotions)

    def _create_clinical_prompt(self, features, emotions, transcription):
        """Create detailed prompt for clinical analysis."""
        prompt = f"""As a clinical voice analysis expert, provide a detailed psychological assessment based on the following data:

Voice Characteristics Analysis:
- Pitch: {features['pitch_mean']:.2f} Hz (Normal range: {self.reference_ranges['pitch']['min']}-{self.reference_ranges['pitch']['max']} Hz)
- Pitch Variation: {features['pitch_std']:.2f} Hz
- Speech Rate: {features['tempo']:.2f} BPM (Normal range: {self.reference_ranges['tempo']['min']}-{self.reference_ranges['tempo']['max']} BPM)
- Voice Energy Level: {features['energy_mean']:.4f} (Normal range: {self.reference_ranges['energy']['min']}-{self.reference_ranges['energy']['max']})

Emotional Analysis:
{', '.join(f'{emotion}: {score:.1%}' for emotion, score in emotions.items())}

Speech Content:
"{transcription}"

Please provide a comprehensive assessment including:
1. Detailed voice characteristic analysis and what it indicates about mental state
2. Assessment of emotional state based on both voice features and detected emotions
3. Potential indicators of anxiety, depression, or other mental health concerns
4. Evaluation of stress levels and emotional stability
5. Specific recommendations for mental health professionals or further assessment if needed

Base your analysis on established clinical research connecting voice biomarkers to psychological states."""

        print(f"Generated prompt length: {len(prompt)} characters")
        return prompt

    def _format_analysis(self, analysis):
        """Format the clinical analysis output."""
        return f"\nClinical Assessment:\n{analysis}"

    def _generate_backup_analysis(self, features, emotions):
        """Generate basic analysis when API is unavailable."""
        try:
            dominant_emotion = max(emotions.items(), key=lambda x: x[1])
            pitch_status = (
                "elevated" if features['pitch_mean'] > self.reference_ranges['pitch']['max']
                else "reduced" if features['pitch_mean'] < self.reference_ranges['pitch']['min']
                else "normal"
            )
            
            tempo_status = (
                "rapid" if features['tempo'] > self.reference_ranges['tempo']['max']
                else "slow" if features['tempo'] < self.reference_ranges['tempo']['min']
                else "normal"
            )
            
            energy_status = (
                "high" if features['energy_mean'] > self.reference_ranges['energy']['max']
                else "low" if features['energy_mean'] < self.reference_ranges['energy']['min']
                else "normal"
            )
            
            return f"""
Detailed Voice Analysis:
- Pitch Status: {pitch_status} ({features['pitch_mean']:.2f} Hz)
- Speech Rate: {features['tempo']:.2f} BPM ({tempo_status})
- Voice Energy Level: {features['energy_mean']:.4f} ({energy_status})
- Primary Emotion: {dominant_emotion[0]} ({dominant_emotion[1]:.1%} confidence)

Potential Indicators:
- Pitch: {self._interpret_pitch(features['pitch_mean'], pitch_status)}
- Rate: {self._interpret_tempo(features['tempo'], tempo_status)}
- Energy: {self._interpret_energy(features['energy_mean'], energy_status)}
"""
        except Exception as e:
            print(f"Error in backup analysis: {e}")
            return "Error generating analysis. Please try again."

    def _interpret_pitch(self, pitch, status):
        if status == "elevated":
            return "May indicate heightened stress or anxiety"
        elif status == "reduced":
            return "Could suggest low energy or depressed mood"
        return "Within normal range, suggesting stable emotional state"

    def _interpret_tempo(self, tempo, status):
        if status == "rapid":
            return "May indicate anxiety or agitation"
        elif status == "slow":
            return "Could suggest fatigue or low mood"
        return "Normal pacing indicates balanced emotional state"

    def _interpret_energy(self, energy, status):
        if status == "high":
            return "May indicate heightened emotional state or agitation"
        elif status == "low":
            return "Could suggest reduced emotional expression or fatigue"
        return "Appropriate energy level suggests emotional stability"

def create_feature_plots(features):
    """Create visualizations for voice features."""
    try:
        fig = go.Figure()
        
        # Pitch visualization
        pitch_data = {
            'Mean': features['pitch_mean'],
            'Std Dev': features['pitch_std'],
            'Range': features['pitch_range']
        }
        fig.add_trace(go.Bar(
            name='Pitch Features (Hz)',
            x=list(pitch_data.keys()),
            y=list(pitch_data.values()),
            marker_color='blue'
        ))
        
        # Energy visualization
        energy_data = {
            'Mean': features['energy_mean'],
            'Std Dev': features['energy_std'],
            'Range': features['energy_range']
        }
        fig.add_trace(go.Bar(
            name='Energy Features',
            x=[f"Energy {k}" for k in energy_data.keys()],
            y=list(energy_data.values()),
            marker_color='red'
        ))
        
        # Tempo visualization
        fig.add_trace(go.Scatter(
            name='Speech Rate (BPM)',
            x=['Tempo'],
            y=[features['tempo']],
            mode='markers',
            marker=dict(size=15, color='green')
        ))
        
        fig.update_layout(
            title='Voice Feature Analysis',
            showlegend=True,
            height=600,
            barmode='group',
            xaxis_title='Feature Type',
            yaxis_title='Value',
            template='plotly_white'
        )
        
        return fig.to_html(include_plotlyjs=True)
    except Exception as e:
        print(f"Plot creation error: {e}")
        return None

def create_emotion_plot(emotions):
    """Create visualization for emotion analysis."""
    try:
        fig = go.Figure(data=[
            go.Bar(
                x=list(emotions.keys()),
                y=list(emotions.values()),
                marker_color=['#FF9999', '#66B2FF', '#99FF99', 
                            '#FFCC99', '#FF99CC', '#99FFFF']
            )
        ])
        
        fig.update_layout(
            title='Emotion Analysis',
            xaxis_title='Emotion',
            yaxis_title='Confidence Score',
            yaxis_range=[0, 1],
            template='plotly_white',
            height=400
        )
        
        return fig.to_html(include_plotlyjs=True)
    except Exception as e:
        print(f"Emotion plot error: {e}")
        return None

def analyze_audio(audio_input):
    """Main function for audio analysis."""
    try:
        if audio_input is None:
            return "Please provide an audio input", None, None
        
        audio_path = audio_input[0] if isinstance(audio_input, tuple) else audio_input
        waveform, sr = librosa.load(audio_path, sr=16000, duration=30)
        
        duration = len(waveform) / sr
        if duration < 0.5:
            return "Audio too short (minimum 0.5 seconds needed)", None, None
        
        features = extract_prosodic_features(waveform, sr)
        if features is None:
            return "Feature extraction failed", None, None
        
        feature_viz = create_feature_plots(features)
        
        inputs = processor(waveform, sampling_rate=sr, return_tensors="pt").input_features
        with torch.no_grad():
            predicted_ids = whisper_model.generate(inputs)
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        
        emotion_inputs = emotion_tokenizer(
            transcription,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=512
        )
        
        with torch.no_grad():
            emotion_outputs = emotion_model(**emotion_inputs)
        emotions = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)
        
        emotion_labels = ['anger', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
        emotion_scores = {
            label: float(score) 
            for label, score in zip(emotion_labels, emotions[0].cpu().numpy())
        }
        
        emotion_viz = create_emotion_plot(emotion_scores)
        
        global clinical_analyzer
        if clinical_analyzer is None:
            clinical_analyzer = ClinicalVoiceAnalyzer()
            
        print("Initiating clinical analysis...")  # Debug log
        clinical_analysis = clinical_analyzer.analyze_voice_metrics(
            features, emotion_scores, transcription
        )
        print("Clinical analysis completed")  # Debug log
        
        # Create summary with fixed string formatting
        summary = f"""Voice Analysis Summary:

Speech Content:
{transcription}

Voice Characteristics:
- Average Pitch: {features['pitch_mean']:.2f} Hz
- Pitch Variation: {features['pitch_std']:.2f} Hz
- Speech Rate (Tempo): {features['tempo']:.2f} BPM
- Voice Energy: {features['energy_mean']:.4f}

Dominant Emotion: {max(emotion_scores.items(), key=lambda x: x[1])[0]}
Emotion Confidence: {max(emotion_scores.values()):.2%}

Recording Duration: {duration:.2f} seconds

{clinical_analysis}
"""
        return summary, emotion_viz, feature_viz
        
    except Exception as e:
        error_msg = f"Analysis failed: {str(e)}"
        print(error_msg)
        return error_msg, None, None

# Application initialization
try:
    print("===== Application Startup =====")
    
    # Load required models with authentication
    if not load_models():
        raise RuntimeError("Model loading failed")
    
    # Initialize clinical analyzer with authentication
    clinical_analyzer = ClinicalVoiceAnalyzer()
    print("Clinical analyzer initialized")
    
    description = """This application provides comprehensive voice analysis with clinical insights:

1. Voice Features:
   - Pitch analysis (fundamental frequency and variation)
   - Energy patterns (volume and intensity)
   - Speech rate (words per minute)
   - Voice quality metrics
   
2. Clinical Analysis:
   - Mental health indicators
   - Emotional state evaluation
   - Risk assessment
   - Clinical recommendations
   
3. Emotional Content:
   - Emotion detection (6 basic emotions)
   - Emotional intensity analysis
   
For optimal results:
- Record in a quiet environment
- Speak clearly and naturally
- Keep recordings between 1-5 seconds
- Maintain consistent volume

Upload an audio file or record directly through your microphone."""

    demo = gr.Interface(
        fn=analyze_audio,
        inputs=gr.Audio(
            sources=["microphone", "upload"],
            type="filepath",
            label="Audio Input (Recommended: 1-5 seconds of clear speech)"
        ),
        outputs=[
            gr.Textbox(label="Analysis Summary", lines=15),
            gr.HTML(label="Emotion Analysis"),
            gr.HTML(label="Voice Feature Analysis")
        ],
        title="Voice Analysis System with Clinical Interpretation",
        description=description,
        article="""This system uses advanced AI models to analyze voice patterns and provide mental health insights. 
                  The analysis combines speech recognition, emotion detection, and clinical interpretation to offer 
                  a comprehensive understanding of psychological indicators present in voice characteristics.
                  
                  Note: This tool is for informational purposes only and should not be used as a substitute for 
                  professional medical advice, diagnosis, or treatment.""",
        examples=None,
        cache_examples=False,
        theme="default"
    )
    
    if __name__ == "__main__":
        demo.launch(
            server_name="0.0.0.0",  # Allow external access
            server_port=7860,        # Default Gradio port
            share=False,             # Disable public URL generation
            debug=False              # Disable debug mode in production
        )
        
except Exception as e:
    print(f"Error during application startup: {str(e)}")
    raise