import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence, cleaned_text_to_sequence from text.cleaners import japanese_cleaners from scipy.io.wavfile import write def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) # print(text_norm.shape) return text_norm hps_ms = utils.get_hparams_from_file("configs/japanese_base.json") hps = utils.get_hparams_from_file("configs/japanese_base.json") net_g_ms = SynthesizerTrn( len(symbols), hps_ms.data.filter_length // 2 + 1, hps_ms.train.segment_size // hps.data.hop_length, n_speakers=hps_ms.data.n_speakers, **hps_ms.model) def jtts(spkid, text): sid = torch.LongTensor([spkid]) # speaker identity stn_tst = get_text(text, hps_ms) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) # print(stn_tst.size()) audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() return _ = utils.load_checkpoint("output.pth", net_g_ms, None) def tts(text): if len(text) > 150: return "Error: Text is too long", None sid = torch.LongTensor([2]) # speaker identity stn_tst = get_text(text, hps_ms) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) # print(stn_tst.size()) audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() return "Success", (hps.data.sampling_rate, audio) def clean_text(text): return japanese_cleaners(text) def generate_from_clean(text): if len(text) > 300: return "Error: Text is too long", None sid = torch.LongTensor([2]) # speaker identity text_norm = cleaned_text_to_sequence(text) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) stn_tst = torch.LongTensor(text_norm) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() return "Success", (hps.data.sampling_rate, audio) app = gr.Blocks() with app: with gr.Tabs(): with gr.TabItem("Basic"): tts_input1 = gr.TextArea(label="Text in Japanese (150 words limitation)", value="こんにちは。") # tts_input2 = gr.Dropdown(label="Speaker", choices=hps.speakers, type="index", value=hps.speakers[0]) tts_submit = gr.Button("Generate", variant="primary") tts_output1 = gr.Textbox(label="Message") tts_output2 = gr.Audio(label="Output") tts_submit.click(tts, [tts_input1], [tts_output1, tts_output2]) with gr.TabItem("Advanced"): tts_input3 = gr.TextArea(label="Text in Japanese", value="こんにちは。") tts_s1 = gr.Button("Clean", variant="primary") tts_input4 = gr.TextArea(label="Cleaned Text (300 words limitation)", value="ko↑Nniʧiwa.") tts_s2 = gr.Button("Generate", variant="primary") message = gr.Textbox(label="Message") tts_o = gr.Audio(label="Output") tts_s1.click(clean_text, [tts_input3], [ tts_input4]) tts_s2.click(generate_from_clean, [tts_input4], [message, tts_o]) app.launch()