import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("inkleaves/spam_detection_model") tokenizer = AutoTokenizer.from_pretrained("inkleaves/spam_detection_model") def predict_spam(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) prediction = outputs.logits.argmax(dim=-1).item() return "Spam" if prediction == 1 else "Not Spam" # interface = gr.Interface(fn=predict, inputs="text", outputs="text") #interface.launch(share=True) # Create the Gradio interface app = gr.Interface( fn=predict_spam, inputs="text", outputs="text", live=False, title="Spam Detection", # Title of the app description="This app classifies text as either Spam or Ham.", # Description of the app ) # Add a custom header in larger, bolded text using HTML header = gr.HTML("<h1 style='font-size:36px; font-weight:bold;'>Spam Detection App</h1>") # Launch the app with the header displayed above the interface #header.launch(share=True) # Launching header app.launch(share=True) # Launching app