from huggingface_hub import from_pretrained_fastai import gradio as gr import numpy as np from fastai.basics import * from fastai.vision import models from fastai.vision.all import * from fastai.metrics import * from fastai.data.all import * from fastai.callback import * import torchvision.transforms as transforms device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = torch.jit.load("hrnet.pth") def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): image = transforms.Resize((480,640))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1] = 255 mask[mask==2] = 150 mask[mask==3] = 76 mask[mask==4] = 29 mask=np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Image(type='numpy'), examples=['color_154.jpg','color_155.jpg']).launch(share=False)