from huggingface_hub import from_pretrained_fastai import gradio as gr from icevision.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "inigo99/kangaroo-detector" class_map = ClassMap(['kangaroo']) model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True), num_classes=len(class_map)) state_dict = torch.load("fasterRCNNkangaroo.pth") model.load_state_dict(state_dict) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): #img = PILImage.create(img) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()]) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict['img'] # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(type='filepath'), outputs=gr.outputs.Image(type='pil'), examples=['00001.jpg','00002.jpg']).launch(share=False)