llama3.2 / app.py
infokarthikraja's picture
Create app.py
8a1e711 verified
raw
history blame contribute delete
954 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
model_name = "huihui-ai/Llama-3.2-3B-Instruct-abliterated"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
low_cpu_mem_usage=True
)
# Define the text generation function
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs["input_ids"], max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create the Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."),
outputs="text",
title="Llama 3.2 3B Instruct Abliterated",
description="An uncensored language model. Enter your prompt to receive a response."
)
if __name__ == "__main__":
iface.launch()