import os import sys import gradio as gr from huggingface_hub import InferenceClient, login from dotenv import find_dotenv, load_dotenv from huggingface_hub import login found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) path = os.path.dirname(found_dotenv) print(f"Adding {path} to sys.path") sys.path.append(path) model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct" print(f"Using model: {model_name}") hf_token = os.getenv("HF_TOKEN") print(f"Using HF token: {hf_token[-4:]}") login(token=hf_token, add_to_git_credential=True) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient(model_name, token=hf_token) def respond( message, history, system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] if history: messages += history messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()