import json import os import gradio as gr from huggingface_hub import InferenceClient from eval_modules.utils import calc_bleu_rouge_scores from eval_modules.calc_repetitions_v2e import detect_repetitions questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./ms_macro.json" questions = json.loads(open(questions_file_path).read()) examples = [[question["question"].strip()] for question in questions] print(f"Loaded {len(examples)} examples") qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1") client = InferenceClient("microsoft/Phi-3.5-mini-instruct") def chat( message, history: list[tuple[str, str]], system_message, temperature=0, frequency_penalty=0, presence_penalty=0, max_tokens=256, top_p=0.95, ): chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) index = -1 if [message] in examples: index = examples.index([message]) message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}" print("RAG prompt:", message) chat.append({"role": "user", "content": message}) messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": message}) partial_text = "" finish_reason = None for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, frequency_penalty=None, # frequency_penalty, presence_penalty=None, # presence_penalty, top_p=top_p, seed=42, ): finish_reason = message.choices[0].finish_reason # print("finish_reason:", finish_reason) if finish_reason is None: new_text = message.choices[0].delta.content partial_text += new_text yield partial_text else: break answer = partial_text (whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer) partial_text += "\n\nRepetition Metrics:\n" partial_text += f"1. Whitespace Score: {whitespace_score:.3f}\n" partial_text += f"1. Repetition Score: {repetition_score:.3f}\n" partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n" partial_text += ( f"1. Non-Repetitive Ratio: {1 - total_repetitions / len(answer):.3f}\n" ) if index >= 0: # RAG key = ( "wellFormedAnswers" if "wellFormedAnswers" in questions[index] else "answers" ) scores = calc_bleu_rouge_scores([answer], [questions[index][key]], debug=True) partial_text += "\n\n Performance Metrics:\n" partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n' partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n' partial_text += f"\n\nGround truth: {questions[index][key][0]}\n" partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n" yield partial_text demo = gr.ChatInterface( fn=chat, examples=examples, cache_examples=False, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider( minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False ), gr.Slider( minimum=-2, maximum=2, step=0.1, value=0, label="Frequency Penalty", render=False, ), gr.Slider( minimum=-2, maximum=2, step=0.1, value=0, label="Presence Penalty", render=False, ), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) demo.launch()