johnbradley commited on
Commit
a258e87
Β·
1 Parent(s): d4d6143

Add initial changes to run drexel_metadata

Browse files

Adds code to run an app that uses the model from
https://github.com/hdr-bgnn/drexel_metadata/ to generate
images and JSON metadata. A user can upload an image and
generate the resulting output files.

Adds requirements.txt created by running `pipenv requirements`
within an environment created from drexel_metadata Pipfile.

Adds drexel_metadata as a submodule.

Files changed (5) hide show
  1. .gitmodules +3 -0
  2. app.py +58 -0
  3. app_header.md +3 -0
  4. drexel_metadata +1 -0
  5. requirements.txt +106 -0
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "drexel_metadata"]
2
+ path = drexel_metadata
3
+ url = https://github.com/hdr-bgnn/drexel_metadata/
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import numpy as np
4
+ import gradio as gr
5
+ import cv2
6
+ from drexel_metadata.gen_metadata import gen_metadata
7
+ from PIL import Image
8
+
9
+
10
+ def create_temp_file_path(prefix, suffix):
11
+ with tempfile.NamedTemporaryFile(prefix=prefix, suffix=suffix, delete=False) as tmpfile:
12
+ return tmpfile.name
13
+
14
+
15
+ def run_inference(input_img):
16
+ # input_mg: NumPy array with the shape (width, height, 3)
17
+
18
+ # Save input_mg as a temporary file
19
+ tmpfile = create_temp_file_path(prefix="input_", suffix, ".png")
20
+ im = Image.fromarray(input_img)
21
+ im.save(tmpfile)
22
+
23
+ # Create temp filenames for output images
24
+ visfname = create_temp_file_path(prefix="vis_", suffix=".png")
25
+ maskfname = create_temp_file_path(prefix="mask_", suffix=".png")
26
+
27
+ # Run inference
28
+ result = gen_metadata(tmpfile, device='cpu', maskfname=maskfname, visfname=visfname)
29
+ json_metadata = json.dumps(result)
30
+
31
+ # Cleanup
32
+ os.remove(tempfile)
33
+
34
+ return visfname, maskfname, json_metadata
35
+
36
+
37
+ def read_app_header_markdown():
38
+ with open('app_header.md') as infile:
39
+ return infile.read()
40
+
41
+
42
+ dm_app = gr.Interface(
43
+ fn=run_inference,
44
+ # Input shows markdown explaining and app and a single image upload panel
45
+ inputs=[
46
+ gr.Markdown(read_app_header_markdown()),
47
+ gr.Image()
48
+ ],
49
+ # Output consists of a visualization image, a masked image, and JSON metadata
50
+ outputs=[
51
+ gr.Image(label='visualization'),
52
+ gr.Image(label='mask'),
53
+ gr.JSON(label="JSON metadata")
54
+ ],
55
+ allow_flagging="never" # Do not save user's results or prompt for users to save the results
56
+ )
57
+ dm_app.launch()
58
+
app_header.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Drexel Metadata
2
+ Generate Metadata for a fish image using the [hdr-bgnn/drexel_metadata model](https://github.com/hdr-bgnn/drexel_metadata).
3
+ The model will create a visualization based on the image, a mask of the fish outline, and JSON metadata.
drexel_metadata ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit a8720c3bfefcbd5caf7d948fad4ba90c2adc7f3c
requirements.txt ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==1.10.1
2
+ torchvision==0.11.2
3
+ absl-py==1.3.0
4
+ antlr4-python3-runtime==4.9.3
5
+ appdirs==1.4.4
6
+ asttokens==2.0.8
7
+ backcall==0.2.0
8
+ black==21.4b2
9
+ cachetools==5.2.0
10
+ certifi==2022.9.24
11
+ charset-normalizer==2.1.1
12
+ click==8.1.3
13
+ cloudpickle==2.2.0
14
+ contourpy==1.0.5
15
+ cycler==0.11.0
16
+ decorator==5.1.1
17
+ distlib==0.3.6
18
+ executing==1.1.1
19
+ filelock==3.8.0
20
+ fonttools==4.37.4
21
+ future==0.18.2
22
+ fvcore==0.1.5.post20220512
23
+ google-auth==2.13.0
24
+ google-auth-oauthlib==0.4.6
25
+ grpcio==1.50.0
26
+ hydra-core==1.2.0
27
+ idna==3.4
28
+ imageio==2.22.2
29
+ importlib-metadata==5.0.0
30
+ importlib-resources==5.10.0
31
+ imutils==0.5.4
32
+ iopath==0.1.9
33
+ ipython==8.5.0
34
+ jedi==0.17.2
35
+ kiwisolver==1.4.4
36
+ Markdown==3.4.1
37
+ MarkupSafe==2.1.1
38
+ matplotlib==3.6.1
39
+ matplotlib-inline==0.1.6
40
+ mypy-extensions==0.4.3
41
+ networkx==2.8.7
42
+ ninja==1.10.2.4
43
+ nptyping==2.3.1
44
+ numpy==1.23.4
45
+ oauthlib==3.2.2
46
+ omegaconf==2.2.3
47
+ opencv-python==4.6.0.66
48
+ packaging==21.3
49
+ pandas==1.5.1
50
+ parso==0.7.1
51
+ pathspec==0.10.1
52
+ pexpect==4.8.0
53
+ pickleshare==0.7.5
54
+ Pillow==9.2.0
55
+ pipenv==2022.10.12
56
+ platformdirs==2.5.2
57
+ portalocker==2.6.0
58
+ prompt-toolkit==3.0.31
59
+ protobuf==3.19.6
60
+ ptyprocess==0.7.0
61
+ pure-eval==0.2.2
62
+ pyasn1==0.4.8
63
+ pyasn1-modules==0.2.8
64
+ pycallgraph==1.0.1
65
+ pycocotools==2.0.5
66
+ pydot==1.4.2
67
+ pyenchant==3.2.2
68
+ Pygments==2.13.0
69
+ pynrrd==1.0.0
70
+ pyparsing==3.0.9
71
+ PySide6==6.4.0
72
+ PySide6-Addons==6.4.0
73
+ PySide6-Essentials==6.4.0
74
+ pytesseract==0.3.10
75
+ python-dateutil==2.8.2
76
+ pytz==2022.5
77
+ PyWavelets==1.4.1
78
+ PyYAML==6.0
79
+ regex==2022.9.13
80
+ requests==2.28.1
81
+ requests-oauthlib==1.3.1
82
+ rsa==4.9
83
+ scikit-image==0.19.3
84
+ scipy==1.9.2
85
+ shiboken6==6.4.0
86
+ six==1.16.0
87
+ stack-data==0.5.1
88
+ tabulate==0.9.0
89
+ tensorboard==2.10.1
90
+ tensorboard-data-server==0.6.1
91
+ tensorboard-plugin-wit==1.8.1
92
+ termcolor==2.0.1
93
+ tifffile==2022.10.10
94
+ toml==0.10.2
95
+ tqdm==4.64.1
96
+ traitlets==5.5.0
97
+ typing_extensions==4.4.0
98
+ urllib3==1.26.12
99
+ virtualenv==20.16.5
100
+ virtualenv-clone==0.5.7
101
+ wcwidth==0.2.5
102
+ Werkzeug==2.2.2
103
+ yacs==0.1.8
104
+ zipp==3.9.0
105
+ detectron2
106
+ -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.10/index.html