Spaces:
Running
Running
Add ability to fetch a dataset of vectordb from hf hub
Browse files- app.py +1 -3
- components/query_neighbor.py +44 -2
app.py
CHANGED
@@ -91,9 +91,7 @@ zero_shot_examples = [
|
|
91 |
],
|
92 |
]
|
93 |
|
94 |
-
|
95 |
-
query_neighbor = QueryNeighbor(vector_db = VECTOR_DB_PATH,
|
96 |
-
dataset_name = "BIRD")
|
97 |
|
98 |
|
99 |
def indexed(lst, indices):
|
|
|
91 |
],
|
92 |
]
|
93 |
|
94 |
+
query_neighbor = QueryNeighbor(dataset_name = "BIRD")
|
|
|
|
|
95 |
|
96 |
|
97 |
def indexed(lst, indices):
|
components/query_neighbor.py
CHANGED
@@ -1,15 +1,57 @@
|
|
1 |
import io
|
|
|
2 |
import chromadb
|
3 |
import boto3
|
4 |
import requests
|
|
|
5 |
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
S3_BUCKET = "tol-bird-dataset-test"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class QueryNeighbor:
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
self._collection = self._client.get_collection(
|
14 |
name=dataset_name
|
15 |
)
|
|
|
1 |
import io
|
2 |
+
import os
|
3 |
import chromadb
|
4 |
import boto3
|
5 |
import requests
|
6 |
+
import logging
|
7 |
|
8 |
from PIL import Image
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from dataclasses import dataclass
|
11 |
+
|
12 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
13 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
14 |
+
logger = logging.getLogger()
|
15 |
|
16 |
S3_BUCKET = "tol-bird-dataset-test"
|
17 |
|
18 |
+
@dataclass
|
19 |
+
class VectorDataset:
|
20 |
+
dataset_name: str
|
21 |
+
hf_dataset_path: str
|
22 |
+
relative_vector_db_path: str
|
23 |
+
|
24 |
+
_SUPPORTED_DATASETS = {
|
25 |
+
"BIRD": VectorDataset(
|
26 |
+
dataset_name="BIRD",
|
27 |
+
hf_dataset_path="imageomics/bird-dataset-vector",
|
28 |
+
relative_vector_db_path="bird_vector_db"
|
29 |
+
),
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
class QueryNeighbor:
|
34 |
+
"""
|
35 |
+
Class to query the nearest neighbor for a given image feature vector.
|
36 |
+
It uses a vector database to find the nearest neighbor and retrieves the image from S3.
|
37 |
+
The class is initialized with the vector database path and the dataset name.
|
38 |
+
The vector database is downloaded from Hugging Face Hub and stored in a local cache.
|
39 |
+
The class uses the chromadb library to interact with the vector database and boto3 to interact with S3.
|
40 |
+
"""
|
41 |
+
def __init__(self, dataset_name: str):
|
42 |
+
logger.info("Initializing QueryNeighbor")
|
43 |
+
vector_dataset = _SUPPORTED_DATASETS.get(dataset_name)
|
44 |
+
if vector_dataset is None:
|
45 |
+
raise ValueError(f"Unsupported dataset: {dataset_name}")
|
46 |
+
|
47 |
+
vector_db_path = snapshot_download(
|
48 |
+
repo_id=vector_dataset.hf_dataset_path,
|
49 |
+
repo_type="dataset"
|
50 |
+
)
|
51 |
+
logger.info(f"Vector DB cache: {vector_db_path}")
|
52 |
+
self._client = chromadb.PersistentClient(
|
53 |
+
path=os.path.join(vector_db_path,
|
54 |
+
vector_dataset.relative_vector_db_path))
|
55 |
self._collection = self._client.get_collection(
|
56 |
name=dataset_name
|
57 |
)
|