|
import torch |
|
from diffusers.pipelines import FluxPipeline |
|
from typing import List, Union, Optional, Dict, Any, Callable |
|
from .block import block_forward, single_block_forward |
|
from .lora_controller import enable_lora |
|
from diffusers.models.transformers.transformer_flux import ( |
|
FluxTransformer2DModel, |
|
Transformer2DModelOutput, |
|
USE_PEFT_BACKEND, |
|
is_torch_version, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
logger, |
|
) |
|
import numpy as np |
|
|
|
|
|
def prepare_params( |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_block_samples=None, |
|
controlnet_single_block_samples=None, |
|
return_dict: bool = True, |
|
**kwargs: dict, |
|
): |
|
return ( |
|
hidden_states, |
|
encoder_hidden_states, |
|
pooled_projections, |
|
timestep, |
|
img_ids, |
|
txt_ids, |
|
guidance, |
|
joint_attention_kwargs, |
|
controlnet_block_samples, |
|
controlnet_single_block_samples, |
|
return_dict, |
|
) |
|
|
|
|
|
def tranformer_forward( |
|
transformer: FluxTransformer2DModel, |
|
condition_latents: torch.Tensor, |
|
condition_ids: torch.Tensor, |
|
condition_type_ids: torch.Tensor, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
return_conditional_latents: bool = False, |
|
c_t=0, |
|
**params: dict, |
|
): |
|
self = transformer |
|
use_condition = condition_latents is not None |
|
use_condition_in_single_blocks = model_config.get( |
|
"use_condition_in_single_blocks", True |
|
) |
|
|
|
assert not return_conditional_latents or ( |
|
use_condition and use_condition_in_single_blocks |
|
), "`return_conditional_latents` is True, `use_condition` and `use_condition_in_single_blocks` must be True" |
|
|
|
( |
|
hidden_states, |
|
encoder_hidden_states, |
|
pooled_projections, |
|
timestep, |
|
img_ids, |
|
txt_ids, |
|
guidance, |
|
joint_attention_kwargs, |
|
controlnet_block_samples, |
|
controlnet_single_block_samples, |
|
return_dict, |
|
) = prepare_params(**params) |
|
|
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if ( |
|
joint_attention_kwargs is not None |
|
and joint_attention_kwargs.get("scale", None) is not None |
|
): |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)): |
|
hidden_states = self.x_embedder(hidden_states) |
|
condition_latents = self.x_embedder(condition_latents) if use_condition else None |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
cond_temb = ( |
|
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed( |
|
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections |
|
) |
|
) |
|
if hasattr(self, "cond_type_embed") and condition_type_ids is not None: |
|
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0]) |
|
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype)) |
|
cond_temb = cond_temb + cond_type_emb |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
if use_condition: |
|
cond_ids = condition_ids |
|
cond_rotary_emb = self.pos_embed(cond_ids) |
|
|
|
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states, condition_latents = block_forward( |
|
block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
condition_latents=condition_latents if use_condition else None, |
|
temb=temb, |
|
cond_temb=cond_temb if use_condition else None, |
|
cond_rotary_emb=cond_rotary_emb if use_condition else None, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len( |
|
controlnet_block_samples |
|
) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states = ( |
|
hidden_states |
|
+ controlnet_block_samples[index_block // interval_control] |
|
) |
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
result = single_block_forward( |
|
block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
**( |
|
{ |
|
"condition_latents": condition_latents, |
|
"cond_temb": cond_temb, |
|
"cond_rotary_emb": cond_rotary_emb, |
|
} |
|
if use_condition_in_single_blocks and use_condition |
|
else {} |
|
), |
|
) |
|
if use_condition_in_single_blocks and use_condition: |
|
hidden_states, condition_latents = result |
|
else: |
|
hidden_states = result |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len( |
|
controlnet_single_block_samples |
|
) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
if return_conditional_latents: |
|
condition_latents = ( |
|
self.norm_out(condition_latents, cond_temb) if use_condition else None |
|
) |
|
condition_output = self.proj_out(condition_latents) if use_condition else None |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return ( |
|
(output,) if not return_conditional_latents else (output, condition_output) |
|
) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|