Spaces:
Sleeping
Sleeping
Update appImage.py
Browse files- appImage.py +18 -142
appImage.py
CHANGED
|
@@ -1,22 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
-
import easyocr
|
| 4 |
-
from fastapi import FastAPI
|
| 5 |
-
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
| 6 |
-
import tempfile
|
| 7 |
-
import os
|
| 8 |
-
from gtts import gTTS
|
| 9 |
-
from fpdf import FPDF
|
| 10 |
-
import datetime
|
| 11 |
from PIL import Image
|
| 12 |
import torch
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
# Initialize
|
| 15 |
app = FastAPI()
|
| 16 |
|
| 17 |
# Load models - Using microsoft/git-large-coco
|
| 18 |
try:
|
| 19 |
-
#
|
| 20 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
| 21 |
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
| 22 |
print("Successfully loaded microsoft/git-large-coco model")
|
|
@@ -26,9 +20,6 @@ except Exception as e:
|
|
| 26 |
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 27 |
USE_GIT = False
|
| 28 |
|
| 29 |
-
# Initialize EasyOCR
|
| 30 |
-
reader = easyocr.Reader(['en', 'fr']) # English and French OCR
|
| 31 |
-
|
| 32 |
def generate_caption(image_path):
|
| 33 |
"""Generate caption using the best available model"""
|
| 34 |
try:
|
|
@@ -44,152 +35,37 @@ def generate_caption(image_path):
|
|
| 44 |
print(f"Caption generation error: {e}")
|
| 45 |
return "Could not generate caption"
|
| 46 |
|
| 47 |
-
def
|
| 48 |
-
"""Process image with both captioning and OCR"""
|
| 49 |
-
try:
|
| 50 |
-
# Generate image caption
|
| 51 |
-
caption = generate_caption(image_path)
|
| 52 |
-
|
| 53 |
-
# Extract text with EasyOCR
|
| 54 |
-
ocr_result = reader.readtext(image_path, detail=0)
|
| 55 |
-
extracted_text = "\n".join(ocr_result) if ocr_result else "No text detected"
|
| 56 |
-
|
| 57 |
-
return {
|
| 58 |
-
"caption": caption,
|
| 59 |
-
"extracted_text": extracted_text
|
| 60 |
-
}
|
| 61 |
-
except Exception as e:
|
| 62 |
-
return {"error": str(e)}
|
| 63 |
-
|
| 64 |
-
def text_to_speech(text: str) -> str:
|
| 65 |
-
"""Convert text to speech"""
|
| 66 |
-
try:
|
| 67 |
-
tts = gTTS(text)
|
| 68 |
-
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
| 69 |
-
tts.save(temp_audio.name)
|
| 70 |
-
return temp_audio.name
|
| 71 |
-
except Exception as e:
|
| 72 |
-
print(f"Text-to-speech error: {e}")
|
| 73 |
-
return ""
|
| 74 |
-
|
| 75 |
-
def create_pdf(content: dict, original_filename: str) -> str:
|
| 76 |
-
"""Create PDF report"""
|
| 77 |
-
try:
|
| 78 |
-
pdf = FPDF()
|
| 79 |
-
pdf.add_page()
|
| 80 |
-
pdf.set_font("Arial", size=12)
|
| 81 |
-
|
| 82 |
-
# Title
|
| 83 |
-
pdf.set_font("Arial", 'B', 16)
|
| 84 |
-
pdf.cell(200, 10, txt="Image Analysis Report", ln=1, align='C')
|
| 85 |
-
pdf.set_font("Arial", size=12)
|
| 86 |
-
|
| 87 |
-
# Metadata
|
| 88 |
-
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
| 89 |
-
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
| 90 |
-
pdf.ln(10)
|
| 91 |
-
|
| 92 |
-
# Caption
|
| 93 |
-
pdf.set_font("", 'B')
|
| 94 |
-
pdf.cell(200, 10, txt="Image Caption:", ln=1)
|
| 95 |
-
pdf.set_font("")
|
| 96 |
-
pdf.multi_cell(0, 10, txt=content['caption'])
|
| 97 |
-
pdf.ln(5)
|
| 98 |
-
|
| 99 |
-
# Extracted Text
|
| 100 |
-
pdf.set_font("", 'B')
|
| 101 |
-
pdf.cell(200, 10, txt="Extracted Text:", ln=1)
|
| 102 |
-
pdf.set_font("")
|
| 103 |
-
pdf.multi_cell(0, 10, txt=content['extracted_text'])
|
| 104 |
-
|
| 105 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 106 |
-
pdf.output(temp_pdf.name)
|
| 107 |
-
return temp_pdf.name
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"PDF creation error: {e}")
|
| 110 |
-
return ""
|
| 111 |
-
|
| 112 |
-
def process_image(file_path: str, enable_tts: bool):
|
| 113 |
"""Handle image processing for Gradio interface"""
|
| 114 |
if not file_path:
|
| 115 |
-
return "Please upload an image first"
|
| 116 |
|
| 117 |
try:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Analyze image
|
| 121 |
-
result = analyze_image(file_path)
|
| 122 |
-
if "error" in result:
|
| 123 |
-
return result["error"], "Error", None, None
|
| 124 |
-
|
| 125 |
-
# Format output
|
| 126 |
-
output_text = f"📷 Image Caption:\n{result['caption']}\n\n✍️ Extracted Text:\n{result['extracted_text']}"
|
| 127 |
-
|
| 128 |
-
# Generate audio
|
| 129 |
-
audio_path = text_to_speech(f"Image caption: {result['caption']}. Extracted text: {result['extracted_text']}") if enable_tts else None
|
| 130 |
-
|
| 131 |
-
# Generate PDF
|
| 132 |
-
pdf_path = create_pdf(result, original_filename)
|
| 133 |
-
|
| 134 |
-
return output_text, "Analysis complete", audio_path, pdf_path
|
| 135 |
except Exception as e:
|
| 136 |
-
return f"
|
| 137 |
|
| 138 |
# Gradio Interface
|
| 139 |
-
with gr.Blocks(title="Image
|
| 140 |
-
gr.Markdown("# 🖼️ Image
|
| 141 |
-
gr.Markdown("Upload an image to get automatic captioning
|
| 142 |
|
| 143 |
with gr.Row():
|
| 144 |
with gr.Column():
|
| 145 |
image_input = gr.Image(label="Upload Image", type="filepath")
|
| 146 |
-
|
| 147 |
-
label="Enable Text-to-Speech",
|
| 148 |
-
value=False
|
| 149 |
-
)
|
| 150 |
-
analyze_btn = gr.Button("Analyze Image", variant="primary")
|
| 151 |
|
| 152 |
with gr.Column():
|
| 153 |
-
output = gr.Textbox(label="
|
| 154 |
-
status = gr.Textbox(label="Status", interactive=False)
|
| 155 |
-
audio_output = gr.Audio(label="Audio Summary", visible=False)
|
| 156 |
-
pdf_download = gr.File(label="Download Report", visible=False)
|
| 157 |
-
|
| 158 |
-
def toggle_audio_visibility(enable_tts):
|
| 159 |
-
return gr.Audio(visible=enable_tts)
|
| 160 |
-
|
| 161 |
-
def update_ui(result, status, audio_path, pdf_path):
|
| 162 |
-
return (
|
| 163 |
-
result,
|
| 164 |
-
status,
|
| 165 |
-
gr.Audio(visible=audio_path is not None, value=audio_path),
|
| 166 |
-
gr.File(visible=pdf_path is not None, value=pdf_path)
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
tts_checkbox.change(
|
| 170 |
-
fn=toggle_audio_visibility,
|
| 171 |
-
inputs=tts_checkbox,
|
| 172 |
-
outputs=audio_output
|
| 173 |
-
)
|
| 174 |
|
| 175 |
analyze_btn.click(
|
| 176 |
fn=process_image,
|
| 177 |
-
inputs=[image_input
|
| 178 |
-
outputs=[output
|
| 179 |
-
).then(
|
| 180 |
-
fn=update_ui,
|
| 181 |
-
inputs=[output, status, audio_output, pdf_download],
|
| 182 |
-
outputs=[output, status, audio_output, pdf_download]
|
| 183 |
)
|
| 184 |
|
| 185 |
-
# FastAPI
|
| 186 |
-
@app.get("/files/{file_name}")
|
| 187 |
-
async def get_file(file_name: str):
|
| 188 |
-
file_path = os.path.join(tempfile.gettempdir(), file_name)
|
| 189 |
-
if os.path.exists(file_path):
|
| 190 |
-
return FileResponse(file_path)
|
| 191 |
-
return JSONResponse({"error": "File not found"}, status_code=404)
|
| 192 |
-
|
| 193 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 194 |
|
| 195 |
@app.get("/")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
+
from fastapi import FastAPI
|
| 6 |
+
from fastapi.responses import RedirectResponse
|
| 7 |
|
| 8 |
+
# Initialize FastAPI
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
# Load models - Using microsoft/git-large-coco
|
| 12 |
try:
|
| 13 |
+
# Load the better model
|
| 14 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
| 15 |
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
| 16 |
print("Successfully loaded microsoft/git-large-coco model")
|
|
|
|
| 20 |
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 21 |
USE_GIT = False
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
def generate_caption(image_path):
|
| 24 |
"""Generate caption using the best available model"""
|
| 25 |
try:
|
|
|
|
| 35 |
print(f"Caption generation error: {e}")
|
| 36 |
return "Could not generate caption"
|
| 37 |
|
| 38 |
+
def process_image(file_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"""Handle image processing for Gradio interface"""
|
| 40 |
if not file_path:
|
| 41 |
+
return "Please upload an image first"
|
| 42 |
|
| 43 |
try:
|
| 44 |
+
caption = generate_caption(file_path)
|
| 45 |
+
return f"📷 Image Caption:\n{caption}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
+
return f"Error processing image: {str(e)}"
|
| 48 |
|
| 49 |
# Gradio Interface
|
| 50 |
+
with gr.Blocks(title="Image Captioning Service", theme=gr.themes.Soft()) as demo:
|
| 51 |
+
gr.Markdown("# 🖼️ Image Captioning Service")
|
| 52 |
+
gr.Markdown("Upload an image to get automatic captioning")
|
| 53 |
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column():
|
| 56 |
image_input = gr.Image(label="Upload Image", type="filepath")
|
| 57 |
+
analyze_btn = gr.Button("Generate Caption", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
with gr.Column():
|
| 60 |
+
output = gr.Textbox(label="Caption Result", lines=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
analyze_btn.click(
|
| 63 |
fn=process_image,
|
| 64 |
+
inputs=[image_input],
|
| 65 |
+
outputs=[output]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
+
# Mount Gradio app to FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 70 |
|
| 71 |
@app.get("/")
|