import streamlit as st import transformers import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer model_name = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta") tokenizer_name = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta") # Define the function for detecting fake news @st.cache_resource def detect_fake_news(text): # Load the pipeline. pipeline = transformers.pipeline("text-classification", model=model_name, tokenizer=tokenizer_name) # Predict the sentiment. prediction = pipeline(text) sentiment = prediction[0]["label"] score = prediction[0]["score"] return sentiment, score # Setting the page configurations st.set_page_config( page_title="Fake News Detection App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # Fake News Detection Enter some text and we'll tell you if it's likely to be fake news or not! """) # Add image image = st.image("https://docs.gato.txst.edu/78660/w/2000/a_1dzGZrL3bG/fake-fact.jpg", width=400) # Get user input text = st.text_input("Enter some text here:") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Show fake news detection output if text: label, score = detect_fake_news(text) print(label, score) if label == "LABEL_1": st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!") else: st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")