Spaces:
Runtime error
Runtime error
ighoshsubho
commited on
app.py created (#1)
Browse files- app.py created (9aaa3f4e3cbd77a1dfd1ccfadebc3b1b7e5bc115)
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
from transformers import BitsAndBytesConfig
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
|
8 |
+
def load_model():
|
9 |
+
"""Load the model and processor"""
|
10 |
+
repo_name = "ighoshsubho/pali-gamma-finetuned-json"
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
# Configure quantization
|
14 |
+
quantization_config = BitsAndBytesConfig(
|
15 |
+
load_in_4bit=True,
|
16 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
17 |
+
bnb_4bit_quant_type="nf4",
|
18 |
+
bnb_4bit_use_double_quant=True
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load processor and model
|
22 |
+
processor = PaliGemmaProcessor.from_pretrained(repo_name)
|
23 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
24 |
+
repo_name,
|
25 |
+
quantization_config=quantization_config,
|
26 |
+
device_map=device,
|
27 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else None
|
28 |
+
)
|
29 |
+
|
30 |
+
return model, processor
|
31 |
+
|
32 |
+
# Load model globally
|
33 |
+
print("Loading model...")
|
34 |
+
model, processor = load_model()
|
35 |
+
print("Model loaded successfully!")
|
36 |
+
|
37 |
+
def process_image(image, prompt):
|
38 |
+
"""Process the image and return the model's output"""
|
39 |
+
try:
|
40 |
+
# Ensure image is in PIL format
|
41 |
+
if not isinstance(image, Image.Image):
|
42 |
+
image = Image.open(image)
|
43 |
+
|
44 |
+
# Prepare inputs
|
45 |
+
inputs = processor(
|
46 |
+
text=[f"<image>{prompt}"],
|
47 |
+
images=[image],
|
48 |
+
return_tensors="pt",
|
49 |
+
padding="longest"
|
50 |
+
).to(model.device)
|
51 |
+
|
52 |
+
# Generate output
|
53 |
+
outputs = model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_length=512,
|
56 |
+
num_beams=5,
|
57 |
+
temperature=0.7
|
58 |
+
)
|
59 |
+
|
60 |
+
# Decode output
|
61 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
62 |
+
return result
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
return f"Error processing image: {str(e)}"
|
66 |
+
|
67 |
+
# Create Gradio interface
|
68 |
+
demo = gr.Interface(
|
69 |
+
fn=process_image,
|
70 |
+
inputs=[
|
71 |
+
gr.Image(type="pil", label="Upload Image"),
|
72 |
+
gr.Textbox(
|
73 |
+
label="Prompt",
|
74 |
+
placeholder="Enter your prompt here...",
|
75 |
+
value="extract data in JSON format"
|
76 |
+
)
|
77 |
+
],
|
78 |
+
outputs=gr.Textbox(label="Generated Output"),
|
79 |
+
title="PaLI-GAMMA Image Analysis",
|
80 |
+
description="Upload an image and get structured data extracted in JSON format. The model is running in 4-bit quantization mode.",
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|