# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CodeBLEU metric.""" import evaluate import datasets from .CodeBLEU import calc_codebleu # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {CodeBLEU: A Metric for Evaluating Code Generation}, authors={Sedykh, Ivan}, year={2022} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is an adaptation of the original CodeBLEU metric from CodexGLUE benchmark for evaluating code generation. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of lists of references. Each list should contain len(predictions) items. lang: programming language in ['java','js','c_sharp','php','go','python','ruby'] tokenizer: tokenizer function str -> List[str], Defaults to lambda s: s.split() params: str, weights for averaging(see CodeBLEU paper). Defaults to equal weights "0.25,0.25,0.25,0.25". Returns: CodeBLEU: resulting score, ngram_match_score: See paper CodeBLEU, weighted_ngram_match_score: See paper CodeBLEU, syntax_match_score: See paper CodeBLEU, dataflow_match_score: See paper CodeBLEU, Examples: >>> codebleu = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ # TODO: Define external resources urls if needed # BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class codebleu(evaluate.Metric): """CodeBLEU metric from CodexGLUE""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Sequence(datasets.Value("string")), } ), # Homepage of the module for documentation homepage="", # Additional links to the codebase or references codebase_urls=[], reference_urls=[ "https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator", "https://arxiv.org/abs/2009.10297", ], ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed # source CodeBLEU/parser/build.sh pass def _compute( self, predictions, references, lang, tokenizer=None, params="0.25,0.25,0.25,0.25", ): """Returns the scores""" res = calc_codebleu( predictions=predictions, references=references, lang=lang, tokenizer=tokenizer, params=params, ) return res