Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import numpy as np
|
5 |
import random
|
6 |
-
import moviepy.editor
|
7 |
|
8 |
-
#
|
9 |
ayahs = {
|
10 |
"sad": [
|
11 |
{
|
@@ -33,43 +31,57 @@ ayahs = {
|
|
33 |
]
|
34 |
}
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
# Convert to OpenCV image
|
42 |
-
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
43 |
-
image = cv2.imdecode(file_bytes, 1)
|
44 |
-
st.image(image, channels="BGR")
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
result = detector.top_emotion(image)
|
49 |
-
st.write(f"Detected: {result}")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
key = "sad"
|
57 |
-
elif emotion in ["happy", "surprise"]:
|
58 |
-
key = "happy"
|
59 |
-
elif emotion in ["angry", "disgust"]:
|
60 |
-
key = "angry"
|
61 |
-
else:
|
62 |
-
key = "sad"
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
**📖 Ayah ({ayah['ayah']})**
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from gradio_client import Client, file
|
3 |
+
import tempfile
|
|
|
4 |
import random
|
|
|
5 |
|
6 |
+
# --- Your Qur’an ayahs ---
|
7 |
ayahs = {
|
8 |
"sad": [
|
9 |
{
|
|
|
31 |
]
|
32 |
}
|
33 |
|
34 |
+
# --- Streamlit UI ---
|
35 |
+
st.set_page_config(page_title="Qur’an Healing Soul - Image Emotion", page_icon="🌙")
|
36 |
|
37 |
+
st.title("🌙 Qur’an Healing Soul - Emotion from Image")
|
38 |
|
39 |
+
uploaded_file = st.file_uploader("Upload your selfie", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
if uploaded_file:
|
42 |
+
st.image(uploaded_file, caption="Uploaded Image")
|
|
|
|
|
43 |
|
44 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
45 |
+
tmp_file.write(uploaded_file.read())
|
46 |
+
tmp_file_path = tmp_file.name
|
47 |
|
48 |
+
st.info("Detecting emotion... please wait...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Call the remote FER model
|
51 |
+
client = Client("ElenaRyumina/Facial_Expression_Recognition")
|
|
|
52 |
|
53 |
+
result = client.predict(
|
54 |
+
inp=file(tmp_file_path),
|
55 |
+
api_name="/preprocess_image_and_predict"
|
56 |
+
)
|
57 |
|
58 |
+
# Unpack returned values
|
59 |
+
_, _, confidences = result
|
60 |
|
61 |
+
st.subheader("Emotion Probabilities")
|
62 |
+
st.json(confidences)
|
63 |
+
|
64 |
+
# Find dominant emotion
|
65 |
+
dominant = max(confidences, key=confidences.get)
|
66 |
+
st.success(f"Dominant Emotion: **{dominant}**")
|
67 |
+
|
68 |
+
# Map emotion
|
69 |
+
if dominant.lower() in ["sad", "fear"]:
|
70 |
+
key = "sad"
|
71 |
+
elif dominant.lower() in ["happy", "surprise"]:
|
72 |
+
key = "happy"
|
73 |
+
elif dominant.lower() in ["angry", "disgust"]:
|
74 |
+
key = "angry"
|
75 |
else:
|
76 |
+
key = "sad"
|
77 |
+
|
78 |
+
ayah = random.choice(ayahs[key])
|
79 |
+
st.markdown(f"""
|
80 |
+
### 📖 Ayah ({ayah['ayah']})
|
81 |
+
|
82 |
+
**Arabic:** *{ayah['arabic']}*
|
83 |
+
|
84 |
+
**Translation:** {ayah['translation']}
|
85 |
+
|
86 |
+
**Tafsir:** {ayah['tafsir']}
|
87 |
+
""")
|