Spaces:
Running
Running
José Ángel González
commited on
Commit
·
ed1f9e1
1
Parent(s):
c563d70
improve distinction between Spanish and Spanish Mixed
Browse files- app.py +337 -223
- etc/languages_settings.yml +2 -2
app.py
CHANGED
@@ -8,6 +8,7 @@ from pathlib import Path
|
|
8 |
import pandas as pd
|
9 |
import streamlit as st
|
10 |
import plotly.express as px
|
|
|
11 |
|
12 |
from datasets import load_dataset
|
13 |
from huggingface_hub import CommitScheduler, hf_hub_download
|
@@ -20,7 +21,12 @@ from src.task_mappings import professional_mapping, semantic_categories
|
|
20 |
# -----------------------------------------------------------------------------
|
21 |
# Page configuration and global CSS styles for modern look and improved UX
|
22 |
# -----------------------------------------------------------------------------
|
23 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
st.markdown(
|
26 |
"""
|
@@ -68,8 +74,16 @@ request_folder = request_file.parent
|
|
68 |
LANGUAGES_SETTINGS = Path("etc/languages_settings.yml")
|
69 |
|
70 |
dataset_columns = [
|
71 |
-
"workshop",
|
72 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
]
|
74 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
75 |
|
@@ -83,30 +97,42 @@ scheduler = CommitScheduler(
|
|
83 |
every=10,
|
84 |
)
|
85 |
|
|
|
86 |
def log_submission(input_dict: dict) -> None:
|
87 |
with scheduler.lock:
|
88 |
with request_file.open("a") as f:
|
89 |
f.write(json.dumps(input_dict))
|
90 |
f.write("\n")
|
91 |
|
|
|
92 |
def get_lang_columns(columns: list, lang: str):
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
@st.cache_data
|
97 |
def load_data(lang) -> pd.DataFrame:
|
98 |
try:
|
99 |
-
data = load_dataset(
|
|
|
|
|
100 |
task_columns = [col for col in data.columns if col not in model_columns]
|
101 |
task_lang_columns = get_lang_columns(task_columns, lang)
|
102 |
-
data[task_columns] = data[task_columns]*100
|
103 |
data = data[model_columns + task_lang_columns]
|
104 |
-
#data["Active"] = False
|
105 |
return data
|
106 |
except FileNotFoundError:
|
107 |
st.error("iberbench/lm-eval-results was not found in the hub 😕")
|
108 |
return pd.DataFrame()
|
109 |
|
|
|
110 |
def load_dataset_card(task) -> list:
|
111 |
name_repo = "iberbench/" + task
|
112 |
try:
|
@@ -130,16 +156,24 @@ def load_dataset_card(task) -> list:
|
|
130 |
|
131 |
|
132 |
def active_data(lang) -> pd.DataFrame:
|
133 |
-
return st.session_state[f"leaderboard_data_{lang}"][
|
|
|
|
|
|
|
134 |
|
135 |
def get_index(lang, row) -> pd.Series:
|
136 |
return active_data(lang).iloc[row].name
|
137 |
|
|
|
138 |
def commit(lang) -> None:
|
139 |
for row in st.session_state[f"edited_data_{lang}"]["edited_rows"]:
|
140 |
row_index = get_index(lang, row)
|
141 |
-
for key, value in st.session_state[f"edited_data_{lang}"][
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
|
144 |
|
145 |
# -----------------------------------------------------------------------------
|
@@ -172,10 +206,14 @@ def create_table_results(df_mean: pd.DataFrame):
|
|
172 |
|
173 |
def create_table_all_results(aggregated_df: pd.DataFrame):
|
174 |
combined_df = create_data_results_per_language()
|
175 |
-
df_lang= combined_df.pivot(
|
176 |
-
|
|
|
|
|
177 |
rank_value = []
|
178 |
-
for i in
|
|
|
|
|
179 |
if i == 1:
|
180 |
rank_value.append(f"{i} 🥇")
|
181 |
elif i == 2:
|
@@ -195,7 +233,7 @@ def create_table_all_results(aggregated_df: pd.DataFrame):
|
|
195 |
"model_type": st.column_config.TextColumn("Type 📌"),
|
196 |
"num_parameters": st.column_config.NumberColumn("Model Size 🔢"),
|
197 |
},
|
198 |
-
)
|
199 |
|
200 |
|
201 |
def create_scatter_chart(df: pd.DataFrame, id_: str):
|
@@ -206,40 +244,57 @@ def create_scatter_chart(df: pd.DataFrame, id_: str):
|
|
206 |
color="model_name",
|
207 |
size="num_parameters",
|
208 |
hover_data=["model_type"],
|
209 |
-
labels={"num_parameters": "Num parameters"}
|
210 |
)
|
211 |
fig.update_layout(template="plotly_white")
|
212 |
-
st.plotly_chart(
|
|
|
|
|
|
|
213 |
|
214 |
def create_radar_chart(df: pd.DataFrame, id_: str):
|
215 |
df = df.sort_values(by="Mean", ascending=False)
|
216 |
-
radar_df = pd.DataFrame(
|
217 |
-
"r": df["Mean"][:10],
|
218 |
-
|
219 |
-
})
|
220 |
fig = px.line_polar(
|
221 |
-
radar_df,
|
|
|
|
|
|
|
|
|
222 |
)
|
223 |
fig.update_traces(fill="toself")
|
224 |
-
st.plotly_chart(
|
|
|
|
|
225 |
|
226 |
|
227 |
def create_pie_chart(df: pd.DataFrame, id_: str):
|
228 |
df_pie = df["model_type"].value_counts().reset_index()
|
229 |
df_pie.columns = ["model_type", "count"]
|
230 |
fig = px.pie(
|
231 |
-
df_pie,
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
233 |
)
|
234 |
-
st.plotly_chart(fig, use_container_width=True, key=id_ + str(random.random()))
|
235 |
|
236 |
|
237 |
def create_box_plot(df: pd.DataFrame, id_: str):
|
238 |
fig = px.box(
|
239 |
-
df,
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
)
|
242 |
-
st.plotly_chart(fig, use_container_width=True, key=id_ + str(random.random()))
|
243 |
|
244 |
|
245 |
def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
@@ -247,8 +302,11 @@ def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
247 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
248 |
for t in task_types:
|
249 |
task_list = semantic_categories[t]
|
250 |
-
cols = [
|
251 |
-
|
|
|
|
|
|
|
252 |
if cols:
|
253 |
tmp = st.session_state[f"leaderboard_data_{lang}"][cols]
|
254 |
df[t] = tmp.mean(axis=1).round(2)
|
@@ -259,7 +317,6 @@ def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
259 |
return df
|
260 |
|
261 |
|
262 |
-
|
263 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
264 |
"""Combine leaderboard summary data from all languages using get_summary_df."""
|
265 |
combined_df = pd.DataFrame()
|
@@ -269,7 +326,9 @@ def get_all_languages_summary_df() -> pd.DataFrame:
|
|
269 |
task_types = select_task_per_language(lang)
|
270 |
summary_df = get_summary_df(lang, task_types)
|
271 |
summary_df["language"] = lang
|
272 |
-
combined_df = pd.concat(
|
|
|
|
|
273 |
return combined_df
|
274 |
|
275 |
|
@@ -283,14 +342,16 @@ def create_results_visualization_lang(lang: str):
|
|
283 |
create_table_results(summary_df)
|
284 |
st.markdown("### Language plots 📊")
|
285 |
# Display the results table for the selected language
|
286 |
-
|
287 |
-
in_lang_tabs = st.tabs(
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
294 |
with in_lang_tabs[0]:
|
295 |
create_radar_chart(summary_df, lang + "in_radar")
|
296 |
with in_lang_tabs[1]:
|
@@ -301,29 +362,38 @@ def create_results_visualization_lang(lang: str):
|
|
301 |
create_box_plot_per_task_category(tasks_df, lang + "in_box_task_cat")
|
302 |
with in_lang_tabs[4]:
|
303 |
create_box_plot_per_semantic_category(tasks_df, lang + "in_box_sem_cat")
|
304 |
-
|
|
|
305 |
# -----------------------------------------------------------------------------
|
306 |
# Functions for other visualization sections
|
307 |
# -----------------------------------------------------------------------------
|
308 |
|
|
|
309 |
def select_task_per_language(lang: str):
|
310 |
types = []
|
311 |
for k, v in semantic_categories.items():
|
312 |
for vv in v:
|
313 |
task_name = vv.split("iberbench/")[1]
|
314 |
-
if task_name in list(
|
|
|
|
|
315 |
if k not in types:
|
316 |
types.append(k)
|
317 |
return types
|
318 |
|
|
|
319 |
def create_dataset_info_per_language(lang: str):
|
320 |
all_values = []
|
321 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
322 |
-
cols = [
|
|
|
|
|
|
|
|
|
323 |
if len(cols) > 1:
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
else:
|
328 |
values = load_dataset_card(cols[0])
|
329 |
all_values.append(values)
|
@@ -331,27 +401,50 @@ def create_dataset_info_per_language(lang: str):
|
|
331 |
st.dataframe(
|
332 |
df,
|
333 |
column_config={
|
334 |
-
"workshop": st.column_config.TextColumn(
|
335 |
-
|
336 |
-
|
337 |
-
"
|
338 |
-
|
339 |
-
|
340 |
-
"
|
341 |
-
|
342 |
-
|
343 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
},
|
345 |
hide_index=True,
|
346 |
)
|
347 |
else:
|
348 |
st.write("No data found to display on leaderboard 😔.")
|
349 |
|
|
|
350 |
def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
351 |
# Compute average performance for each professional category (using professional_mapping).
|
352 |
melt_vars = []
|
353 |
for category, tasks in professional_mapping.items():
|
354 |
-
relevant_cols = [
|
|
|
|
|
355 |
if relevant_cols:
|
356 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
357 |
melt_vars.append(category)
|
@@ -359,18 +452,31 @@ def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
|
359 |
id_vars = model_columns.copy()
|
360 |
if "language" in df.columns:
|
361 |
id_vars.append("language")
|
362 |
-
df_melt = df.melt(
|
|
|
|
|
|
|
|
|
|
|
363 |
fig = px.box(
|
364 |
-
df_melt,
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
)
|
367 |
-
|
368 |
|
369 |
def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
370 |
# Compute average performance for each semantic category defined in semantic_categories.
|
371 |
melt_vars = []
|
372 |
for category, tasks in semantic_categories.items():
|
373 |
-
relevant_cols = [
|
|
|
|
|
374 |
if relevant_cols:
|
375 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
376 |
melt_vars.append(category)
|
@@ -378,19 +484,35 @@ def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
|
378 |
id_vars = model_columns.copy()
|
379 |
if "language" in df.columns:
|
380 |
id_vars.append("language")
|
381 |
-
df_melt = df.melt(
|
|
|
|
|
|
|
|
|
|
|
382 |
fig = px.box(
|
383 |
-
df_melt,
|
384 |
-
|
|
|
|
|
|
|
385 |
)
|
386 |
-
st.plotly_chart(
|
|
|
|
|
|
|
387 |
|
388 |
def create_histogram(df: pd.DataFrame, id_: str):
|
389 |
fig = px.histogram(
|
390 |
-
df,
|
|
|
|
|
|
|
391 |
)
|
392 |
fig.update_layout(template="plotly_white")
|
393 |
-
st.plotly_chart(
|
|
|
|
|
394 |
|
395 |
|
396 |
def create_data_results_per_language() -> pd.DataFrame:
|
@@ -404,7 +526,7 @@ def create_data_results_per_language() -> pd.DataFrame:
|
|
404 |
lang = key.split("leaderboard_data_")[1]
|
405 |
temp_df["language"] = lang
|
406 |
combined_df = pd.concat([combined_df, temp_df], ignore_index=True)
|
407 |
-
|
408 |
if combined_df.empty:
|
409 |
st.warning("No data available for any language ⚠️.")
|
410 |
return
|
@@ -415,28 +537,36 @@ def create_data_results_per_language() -> pd.DataFrame:
|
|
415 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
416 |
# Exclude metadata, language, and any non-numeric columns.
|
417 |
performance_cols = [
|
418 |
-
col
|
419 |
-
|
|
|
420 |
and pd.api.types.is_numeric_dtype(combined_df[col])
|
421 |
]
|
422 |
if performance_cols:
|
423 |
-
combined_df["Mean"] =
|
|
|
|
|
424 |
else:
|
425 |
-
st.warning(
|
|
|
|
|
426 |
return
|
427 |
return combined_df
|
428 |
-
|
429 |
-
|
|
|
430 |
# Create a boxplot with performance (Mean) per language.
|
431 |
combined_df = create_data_results_per_language()
|
432 |
fig = px.box(
|
433 |
-
combined_df,
|
434 |
-
x="language",
|
435 |
-
y="Mean",
|
436 |
points="all",
|
437 |
labels={"language": "Language", "Mean": "Performance (%)"},
|
438 |
)
|
439 |
-
st.plotly_chart(
|
|
|
|
|
440 |
|
441 |
|
442 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
@@ -448,7 +578,9 @@ def get_all_languages_summary_df() -> pd.DataFrame:
|
|
448 |
task_types = select_task_per_language(lang)
|
449 |
summary_df = get_summary_df(lang, task_types)
|
450 |
summary_df["language"] = lang
|
451 |
-
combined_df = pd.concat(
|
|
|
|
|
452 |
return combined_df
|
453 |
|
454 |
|
@@ -458,14 +590,17 @@ def get_all_languages_aggregated_summary_df() -> pd.DataFrame:
|
|
458 |
across languages. Use this aggregated data for radar, scatter, pie, box, and histogram plots.
|
459 |
"""
|
460 |
df = get_all_languages_summary_df()
|
461 |
-
agg_df = df.groupby("model_name", as_index=False).agg(
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
|
|
|
|
467 |
return agg_df
|
468 |
|
|
|
469 |
def get_all_languages_raw_df() -> pd.DataFrame:
|
470 |
"""
|
471 |
Combine the raw leaderboard data from all languages.
|
@@ -484,8 +619,12 @@ def get_all_languages_raw_df() -> pd.DataFrame:
|
|
484 |
# -----------------------------------------------------------------------------
|
485 |
# Sidebar for Navigation and Global Settings
|
486 |
# -----------------------------------------------------------------------------
|
487 |
-
st.sidebar.markdown(
|
488 |
-
|
|
|
|
|
|
|
|
|
489 |
st.sidebar.markdown("---")
|
490 |
st.sidebar.markdown(
|
491 |
"""
|
@@ -496,17 +635,16 @@ st.sidebar.markdown(
|
|
496 |
unsafe_allow_html=True,
|
497 |
)
|
498 |
|
|
|
499 |
def load_languages_set():
|
500 |
with open(LANGUAGES_SETTINGS, "r") as f:
|
501 |
return yaml_load(f)
|
502 |
|
|
|
503 |
lang_set = load_languages_set()
|
504 |
|
505 |
for lang in lang_set.keys():
|
506 |
-
|
507 |
-
data = load_data("Spanish")
|
508 |
-
else:
|
509 |
-
data = load_data(lang)
|
510 |
if f"leaderboard_data_{lang}" not in st.session_state:
|
511 |
st.session_state[f"leaderboard_data_{lang}"] = data
|
512 |
|
@@ -514,29 +652,38 @@ for lang in lang_set.keys():
|
|
514 |
# Main Content based on Navigation
|
515 |
# -----------------------------------------------------------------------------
|
516 |
if menu == "Leaderboard 📊":
|
517 |
-
st.markdown(
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
st.markdown("### General ranking 🏆")
|
520 |
-
|
521 |
# ---------------------------
|
522 |
# All-language plots section
|
523 |
# ---------------------------
|
524 |
-
|
525 |
aggregated_df = get_all_languages_aggregated_summary_df()
|
526 |
create_table_all_results(aggregated_df)
|
527 |
st.markdown("### General plots 📊")
|
528 |
# Use raw data for Fundamental vs Professional and Task Category plots.
|
529 |
raw_all_df = get_all_languages_raw_df()
|
530 |
-
all_lang_tabs = st.tabs(
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
|
|
|
|
540 |
with all_lang_tabs[0]:
|
541 |
create_radar_chart(aggregated_df, "all_radar")
|
542 |
with all_lang_tabs[1]:
|
@@ -554,13 +701,19 @@ if menu == "Leaderboard 📊":
|
|
554 |
create_box_plot_per_semantic_category(raw_all_df, "all_box_sem_cat")
|
555 |
with all_lang_tabs[7]:
|
556 |
create_box_plot_per_language("all_box_language")
|
557 |
-
|
558 |
-
# Results per language
|
559 |
st.markdown("---")
|
560 |
st.markdown("### Language ranking 🏆")
|
561 |
-
lang_choice = st.selectbox(
|
|
|
|
|
562 |
if lang_choice == "Spanish":
|
563 |
-
variations = [
|
|
|
|
|
|
|
|
|
564 |
tabs_var = st.tabs(variations)
|
565 |
for var, tab in zip(variations, tabs_var):
|
566 |
with tab:
|
@@ -569,11 +722,15 @@ if menu == "Leaderboard 📊":
|
|
569 |
create_results_visualization_lang(lang_choice)
|
570 |
|
571 |
elif menu == "Submit Model 🚀":
|
572 |
-
st.markdown(
|
|
|
|
|
|
|
573 |
st.markdown("## How to submit a model 📤")
|
574 |
|
575 |
# CSS
|
576 |
-
st.markdown(
|
|
|
577 |
<style>
|
578 |
.card-container {
|
579 |
max-width: 300px;
|
@@ -611,7 +768,9 @@ elif menu == "Submit Model 🚀":
|
|
611 |
margin-left: 8px;
|
612 |
}
|
613 |
</style>
|
614 |
-
""",
|
|
|
|
|
615 |
|
616 |
def render_card(content):
|
617 |
html = f"""
|
@@ -643,7 +802,10 @@ elif menu == "Submit Model 🚀":
|
|
643 |
index = row * num_columns + col
|
644 |
if index < len(guide_info_list):
|
645 |
with cols[col]:
|
646 |
-
st.markdown(
|
|
|
|
|
|
|
647 |
|
648 |
st.markdown("## Submission form 📝")
|
649 |
with st.form("submit_model_form", clear_on_submit=True):
|
@@ -655,7 +817,10 @@ elif menu == "Submit Model 🚀":
|
|
655 |
"Description ✍️",
|
656 |
help="Add a description of the proposed model for the evaluation to help prioritize its evaluation.",
|
657 |
)
|
658 |
-
user_contact = st.text_input(
|
|
|
|
|
|
|
659 |
precision_option = st.selectbox(
|
660 |
"Choose precision format 🔢:",
|
661 |
help="Size limits vary by precision. Choose carefully as incorrect precision can cause evaluation errors.",
|
@@ -668,7 +833,11 @@ elif menu == "Submit Model 🚀":
|
|
668 |
options=["Original", "Adapter", "Delta"],
|
669 |
index=0,
|
670 |
)
|
671 |
-
base_model_name = st.text_input(
|
|
|
|
|
|
|
|
|
672 |
model_type = st.selectbox(
|
673 |
"Choose model type 🔍:",
|
674 |
help="🟢 Pretrained: Base models, 🔶 Fine-tuned: Domain-specific, 💬 Chat: Conversational, 🤝 Merge: Combined weights.",
|
@@ -678,7 +847,11 @@ elif menu == "Submit Model 🚀":
|
|
678 |
if submit_button:
|
679 |
use_chat_template = True if model_type == "💬 Chat" else False
|
680 |
validation_error = validate_model(
|
681 |
-
model_name,
|
|
|
|
|
|
|
|
|
682 |
)
|
683 |
if validation_error is not None:
|
684 |
st.error(validation_error)
|
@@ -698,121 +871,62 @@ elif menu == "Submit Model 🚀":
|
|
698 |
log_submission(input_dict)
|
699 |
st.success("Your request has been sent successfully 🎉.")
|
700 |
except Exception as e:
|
701 |
-
st.error(
|
|
|
|
|
702 |
|
703 |
elif menu == "Datasets 📚":
|
704 |
-
st.markdown(
|
|
|
|
|
|
|
705 |
st.markdown("### Check the datasets 🔍")
|
706 |
-
lang_iber = [
|
707 |
-
|
708 |
-
|
709 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
710 |
tabs_var = st.tabs(variations)
|
711 |
for var, tab in zip(variations, tabs_var):
|
712 |
with tab:
|
713 |
-
|
714 |
-
create_dataset_info_per_language("Spanish")
|
715 |
-
else:
|
716 |
-
create_dataset_info_per_language(var)
|
717 |
else:
|
718 |
create_dataset_info_per_language(lang_choice)
|
719 |
st.markdown("### Task mappings 🔄")
|
720 |
-
st.markdown(
|
721 |
-
|
|
|
|
|
|
|
|
|
722 |
with tab1:
|
723 |
-
st.json(
|
|
|
|
|
|
|
|
|
|
|
724 |
with tab2:
|
725 |
-
st.json(
|
|
|
|
|
|
|
|
|
|
|
726 |
|
727 |
elif menu == "About ℹ️":
|
728 |
-
st.markdown(
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
### 📂 What are the data sources?
|
735 |
-
|
736 |
-
IberBench contains datasets from prominent workshops in the field such as [IberLEF@SEPLN](https://sepln2024.infor.uva.es/eventos/iberlef-es/) or [PAN@CLEF](https://pan.webis.de/clef24/pan24-web/index.html), as well as stablished existing benchmarks as those from HiTZ, UPF, BSC, CiTIUS-USC, among others, with the aim to incorporate standardized and consistent evaluation within this context, enhancing the value of the data and models derived from this effort.
|
737 |
-
|
738 |
-
We strictly adhere to all established guidelines and regulations concerning the use and publication of this data. Specifically:
|
739 |
-
|
740 |
-
- The collected datasets are published on 🤗HuggingFace private repositories, with appropriate credit given to the authors in the model card.
|
741 |
-
- Under no circumstances we claim ownership of the datasets.
|
742 |
-
- The test splits of the datasets are kept private to avoid leakage from IberBench side.
|
743 |
-
|
744 |
-
In any publication or presentation resulting from work with this data, we recognize the importance of citing and crediting to the organizing teams that crafted the datasets used at IberBench.
|
745 |
-
|
746 |
-
### 🙋 How can I join to IberBench?
|
747 |
-
|
748 |
-
IberBench comprises a committee composed of specialists in NLP, language ethics, and gender discrimination, drawn from both academia and industry, which will oversee the development of the project, ensuring its quality and relevance.
|
749 |
-
|
750 |
-
To be part of this committee, you can ask to join the [IberBench organization at 🤗HuggingFace](https://huggingface.co/iberbench). Your request will be validated by experts already belonging to the organization.
|
751 |
-
|
752 |
-
### 🤝 How can I contribute to IberBench?
|
753 |
-
|
754 |
-
First, the initial committee will gather all the datasets from prominent workshops. From this, you can contribute with new datasets to the IberBench organization. The process is as follows:
|
755 |
-
|
756 |
-
1. Open a new discussion in the [IberBench discussions space](https://huggingface.co/spaces/iberbench/README/discussions), linking to an existing dataset in the 🤗HuggingFace hub and explaining why the inclusion is relevant.
|
757 |
-
2. Discuss with the committee for the approval or rejection of the dataset.
|
758 |
-
3. If approval: your dataset will be included into the IberBench datasets, and will be used to evaluate LLMs in the IberBench leaderboard.
|
759 |
-
|
760 |
-
IberBench will never claim ownership over the dataset, the original author will receive all credits.
|
761 |
-
|
762 |
-
### 💬 Social networks
|
763 |
-
|
764 |
-
You can reach us at:
|
765 |
-
|
766 |
-
- **X**: [https://x.com/IberBench](https://x.com/IberBench)
|
767 |
-
- **🤗 Discussions**: [https://huggingface.co/spaces/iberbench/README/discussions](https://huggingface.co/spaces/iberbench/README/discussions)
|
768 |
-
|
769 |
-
### 🫶 Acknowledgements
|
770 |
-
|
771 |
-
We are incredibly grateful to the amazing teams behind the datasets from workshops like IberLEF, IberEval, and TASS under the umbrella of the [SEPLN](http://www.sepln.org/sepln), as well as the established benchmarks from HiTZ, UPF, BSC, CiTIUS-USC, among others. Their hard work and dedication to advancing NLP have made this benchmark possible. Huge thanks for sharing your invaluable resources with the community! 🚀👏
|
772 |
-
|
773 |
-
IberBench has been funded by the Valencian Institute for Business Competitiveness (IVACE). </br>
|
774 |
-
|
775 |
-
<style>
|
776 |
-
body {
|
777 |
-
margin: 0;
|
778 |
-
display: flex;
|
779 |
-
flex-direction: column;
|
780 |
-
min-height: 100vh;
|
781 |
-
}
|
782 |
-
.footer {
|
783 |
-
margin-top: auto;
|
784 |
-
display: flex;
|
785 |
-
flex-direction: column;
|
786 |
-
align-items: center;
|
787 |
-
text-align: center;
|
788 |
-
width: 100%;
|
789 |
-
background: white;
|
790 |
-
padding: 5px 0;
|
791 |
-
}
|
792 |
-
.footer p {
|
793 |
-
margin: 0;
|
794 |
-
font-size: 16px;
|
795 |
-
}
|
796 |
-
.logos {
|
797 |
-
display: flex;
|
798 |
-
justify-content: center;
|
799 |
-
align-items: center; /* Align images properly */
|
800 |
-
gap: 20px;
|
801 |
-
}
|
802 |
-
.logos img {
|
803 |
-
display: block;
|
804 |
-
margin: 0;
|
805 |
-
padding: 0;
|
806 |
-
max-height: 100px; /* Ensures both images have the same height */
|
807 |
-
width: auto; /* Keeps aspect ratio */
|
808 |
-
}
|
809 |
-
</style>
|
810 |
-
</br>
|
811 |
-
<div class="footer">
|
812 |
-
<p>Developed by Symanto with ❤️</p>
|
813 |
-
<div class="logos">
|
814 |
-
<img src="https://www.ivace.es/images/logo2-ivace.PNG">
|
815 |
-
<img src="https://www.symanto.com/wp-content/uploads/Logos/symanto.svg">
|
816 |
-
</div>
|
817 |
-
</div>
|
818 |
-
""", unsafe_allow_html=True)
|
|
|
8 |
import pandas as pd
|
9 |
import streamlit as st
|
10 |
import plotly.express as px
|
11 |
+
import plotly.graph_objects as go
|
12 |
|
13 |
from datasets import load_dataset
|
14 |
from huggingface_hub import CommitScheduler, hf_hub_download
|
|
|
21 |
# -----------------------------------------------------------------------------
|
22 |
# Page configuration and global CSS styles for modern look and improved UX
|
23 |
# -----------------------------------------------------------------------------
|
24 |
+
st.set_page_config(
|
25 |
+
page_title="IberBench",
|
26 |
+
layout="wide",
|
27 |
+
initial_sidebar_state="expanded",
|
28 |
+
page_icon="🌍",
|
29 |
+
)
|
30 |
|
31 |
st.markdown(
|
32 |
"""
|
|
|
74 |
LANGUAGES_SETTINGS = Path("etc/languages_settings.yml")
|
75 |
|
76 |
dataset_columns = [
|
77 |
+
"workshop",
|
78 |
+
"shared_task",
|
79 |
+
"year",
|
80 |
+
"task_type",
|
81 |
+
"language",
|
82 |
+
"url",
|
83 |
+
"language_variety",
|
84 |
+
"problem_type",
|
85 |
+
"num_labels",
|
86 |
+
"labels",
|
87 |
]
|
88 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
89 |
|
|
|
97 |
every=10,
|
98 |
)
|
99 |
|
100 |
+
|
101 |
def log_submission(input_dict: dict) -> None:
|
102 |
with scheduler.lock:
|
103 |
with request_file.open("a") as f:
|
104 |
f.write(json.dumps(input_dict))
|
105 |
f.write("\n")
|
106 |
|
107 |
+
|
108 |
def get_lang_columns(columns: list, lang: str):
|
109 |
+
# Mixed needs to return all the columns that ends
|
110 |
+
# with the language, but doesn't have variation at the end
|
111 |
+
if "Mixed" in lang:
|
112 |
+
lang = lang.lower().split(" ")[0]
|
113 |
+
return [col for col in columns if col.endswith(lang)]
|
114 |
+
else:
|
115 |
+
lang_norm = lang.lower().replace(" ", "_")
|
116 |
+
return [col for col in columns if lang_norm in col]
|
117 |
+
|
118 |
|
119 |
@st.cache_data
|
120 |
def load_data(lang) -> pd.DataFrame:
|
121 |
try:
|
122 |
+
data = load_dataset(
|
123 |
+
"iberbench/lm-eval-results", token=st.secrets["HF_TOKEN"]
|
124 |
+
)["train"].to_pandas()
|
125 |
task_columns = [col for col in data.columns if col not in model_columns]
|
126 |
task_lang_columns = get_lang_columns(task_columns, lang)
|
127 |
+
data[task_columns] = data[task_columns] * 100
|
128 |
data = data[model_columns + task_lang_columns]
|
129 |
+
# data["Active"] = False
|
130 |
return data
|
131 |
except FileNotFoundError:
|
132 |
st.error("iberbench/lm-eval-results was not found in the hub 😕")
|
133 |
return pd.DataFrame()
|
134 |
|
135 |
+
|
136 |
def load_dataset_card(task) -> list:
|
137 |
name_repo = "iberbench/" + task
|
138 |
try:
|
|
|
156 |
|
157 |
|
158 |
def active_data(lang) -> pd.DataFrame:
|
159 |
+
return st.session_state[f"leaderboard_data_{lang}"][
|
160 |
+
st.session_state[f"leaderboard_data_{lang}"]["Active"] == True
|
161 |
+
].copy()
|
162 |
+
|
163 |
|
164 |
def get_index(lang, row) -> pd.Series:
|
165 |
return active_data(lang).iloc[row].name
|
166 |
|
167 |
+
|
168 |
def commit(lang) -> None:
|
169 |
for row in st.session_state[f"edited_data_{lang}"]["edited_rows"]:
|
170 |
row_index = get_index(lang, row)
|
171 |
+
for key, value in st.session_state[f"edited_data_{lang}"][
|
172 |
+
"edited_rows"
|
173 |
+
][row].items():
|
174 |
+
st.session_state[f"leaderboard_data_{lang}"].at[
|
175 |
+
row_index, key
|
176 |
+
] = value
|
177 |
|
178 |
|
179 |
# -----------------------------------------------------------------------------
|
|
|
206 |
|
207 |
def create_table_all_results(aggregated_df: pd.DataFrame):
|
208 |
combined_df = create_data_results_per_language()
|
209 |
+
df_lang = combined_df.pivot(
|
210 |
+
index="model_name", columns="language", values="Mean"
|
211 |
+
)
|
212 |
+
aggregated_df[df_lang.columns] = df_lang[df_lang.columns].values
|
213 |
rank_value = []
|
214 |
+
for i in (
|
215 |
+
aggregated_df["Mean"].rank(method="dense", ascending=False).astype(int)
|
216 |
+
):
|
217 |
if i == 1:
|
218 |
rank_value.append(f"{i} 🥇")
|
219 |
elif i == 2:
|
|
|
233 |
"model_type": st.column_config.TextColumn("Type 📌"),
|
234 |
"num_parameters": st.column_config.NumberColumn("Model Size 🔢"),
|
235 |
},
|
236 |
+
)
|
237 |
|
238 |
|
239 |
def create_scatter_chart(df: pd.DataFrame, id_: str):
|
|
|
244 |
color="model_name",
|
245 |
size="num_parameters",
|
246 |
hover_data=["model_type"],
|
247 |
+
labels={"num_parameters": "Num parameters"},
|
248 |
)
|
249 |
fig.update_layout(template="plotly_white")
|
250 |
+
st.plotly_chart(
|
251 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
252 |
+
)
|
253 |
+
|
254 |
|
255 |
def create_radar_chart(df: pd.DataFrame, id_: str):
|
256 |
df = df.sort_values(by="Mean", ascending=False)
|
257 |
+
radar_df = pd.DataFrame(
|
258 |
+
{"r": df["Mean"][:10], "theta": df["model_name"][:10]}
|
259 |
+
)
|
|
|
260 |
fig = px.line_polar(
|
261 |
+
radar_df,
|
262 |
+
r="r",
|
263 |
+
theta="theta",
|
264 |
+
line_close=True,
|
265 |
+
markers=True,
|
266 |
)
|
267 |
fig.update_traces(fill="toself")
|
268 |
+
st.plotly_chart(
|
269 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
270 |
+
)
|
271 |
|
272 |
|
273 |
def create_pie_chart(df: pd.DataFrame, id_: str):
|
274 |
df_pie = df["model_type"].value_counts().reset_index()
|
275 |
df_pie.columns = ["model_type", "count"]
|
276 |
fig = px.pie(
|
277 |
+
df_pie,
|
278 |
+
values="count",
|
279 |
+
names="model_type",
|
280 |
+
labels={"model_type": "Model type"},
|
281 |
+
)
|
282 |
+
st.plotly_chart(
|
283 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
284 |
)
|
|
|
285 |
|
286 |
|
287 |
def create_box_plot(df: pd.DataFrame, id_: str):
|
288 |
fig = px.box(
|
289 |
+
df,
|
290 |
+
x="model_type",
|
291 |
+
y="Mean",
|
292 |
+
points="all",
|
293 |
+
labels={"model_type": "Model type"},
|
294 |
+
)
|
295 |
+
st.plotly_chart(
|
296 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
297 |
)
|
|
|
298 |
|
299 |
|
300 |
def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
|
302 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
303 |
for t in task_types:
|
304 |
task_list = semantic_categories[t]
|
305 |
+
cols = [
|
306 |
+
col
|
307 |
+
for col in st.session_state[f"leaderboard_data_{lang}"].columns
|
308 |
+
if "iberbench/" + col in task_list
|
309 |
+
]
|
310 |
if cols:
|
311 |
tmp = st.session_state[f"leaderboard_data_{lang}"][cols]
|
312 |
df[t] = tmp.mean(axis=1).round(2)
|
|
|
317 |
return df
|
318 |
|
319 |
|
|
|
320 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
321 |
"""Combine leaderboard summary data from all languages using get_summary_df."""
|
322 |
combined_df = pd.DataFrame()
|
|
|
326 |
task_types = select_task_per_language(lang)
|
327 |
summary_df = get_summary_df(lang, task_types)
|
328 |
summary_df["language"] = lang
|
329 |
+
combined_df = pd.concat(
|
330 |
+
[combined_df, summary_df], ignore_index=True
|
331 |
+
)
|
332 |
return combined_df
|
333 |
|
334 |
|
|
|
342 |
create_table_results(summary_df)
|
343 |
st.markdown("### Language plots 📊")
|
344 |
# Display the results table for the selected language
|
345 |
+
|
346 |
+
in_lang_tabs = st.tabs(
|
347 |
+
[
|
348 |
+
"Top 10 performance 🥇",
|
349 |
+
"Performance vs. size 📏",
|
350 |
+
"Performance per type 💡",
|
351 |
+
"Fundamental vs industry ⚖️",
|
352 |
+
"Performance per task category 📈",
|
353 |
+
]
|
354 |
+
)
|
355 |
with in_lang_tabs[0]:
|
356 |
create_radar_chart(summary_df, lang + "in_radar")
|
357 |
with in_lang_tabs[1]:
|
|
|
362 |
create_box_plot_per_task_category(tasks_df, lang + "in_box_task_cat")
|
363 |
with in_lang_tabs[4]:
|
364 |
create_box_plot_per_semantic_category(tasks_df, lang + "in_box_sem_cat")
|
365 |
+
|
366 |
+
|
367 |
# -----------------------------------------------------------------------------
|
368 |
# Functions for other visualization sections
|
369 |
# -----------------------------------------------------------------------------
|
370 |
|
371 |
+
|
372 |
def select_task_per_language(lang: str):
|
373 |
types = []
|
374 |
for k, v in semantic_categories.items():
|
375 |
for vv in v:
|
376 |
task_name = vv.split("iberbench/")[1]
|
377 |
+
if task_name in list(
|
378 |
+
st.session_state[f"leaderboard_data_{lang}"].columns
|
379 |
+
):
|
380 |
if k not in types:
|
381 |
types.append(k)
|
382 |
return types
|
383 |
|
384 |
+
|
385 |
def create_dataset_info_per_language(lang: str):
|
386 |
all_values = []
|
387 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
388 |
+
cols = [
|
389 |
+
col
|
390 |
+
for col in st.session_state[f"leaderboard_data_{lang}"].columns
|
391 |
+
if col not in model_columns
|
392 |
+
]
|
393 |
if len(cols) > 1:
|
394 |
+
for task in cols[:-1]:
|
395 |
+
values = load_dataset_card(task)
|
396 |
+
all_values.append(values)
|
397 |
else:
|
398 |
values = load_dataset_card(cols[0])
|
399 |
all_values.append(values)
|
|
|
401 |
st.dataframe(
|
402 |
df,
|
403 |
column_config={
|
404 |
+
"workshop": st.column_config.TextColumn(
|
405 |
+
"Workshop 🏫", help="Workshop to belong to the shared task"
|
406 |
+
),
|
407 |
+
"shared_task": st.column_config.TextColumn(
|
408 |
+
"Shared Task 📋", help="Shared Task name"
|
409 |
+
),
|
410 |
+
"year": st.column_config.TextColumn(
|
411 |
+
"Year 📅", help="Year of the shared task"
|
412 |
+
),
|
413 |
+
"task_type": st.column_config.TextColumn(
|
414 |
+
"Task Type 🔖", help="Shared Task type"
|
415 |
+
),
|
416 |
+
"language": st.column_config.TextColumn(
|
417 |
+
"Language 🌐", help="Shared Task language"
|
418 |
+
),
|
419 |
+
"url": st.column_config.ListColumn(
|
420 |
+
"Task URL 🔗", help="Shared Task url"
|
421 |
+
),
|
422 |
+
"language_variety": st.column_config.TextColumn(
|
423 |
+
"Language Variety 🗣️", help="Shared Task language variety"
|
424 |
+
),
|
425 |
+
"problem_type": st.column_config.TextColumn(
|
426 |
+
"Problem Type ❓", help="Shared Task problem type"
|
427 |
+
),
|
428 |
+
"num_labels": st.column_config.NumberColumn(
|
429 |
+
"Number of Labels 🔢", help="Shared Task number of labels"
|
430 |
+
),
|
431 |
+
"labels": st.column_config.ListColumn(
|
432 |
+
"Labels 🏷️", help="Shared Task labels"
|
433 |
+
),
|
434 |
},
|
435 |
hide_index=True,
|
436 |
)
|
437 |
else:
|
438 |
st.write("No data found to display on leaderboard 😔.")
|
439 |
|
440 |
+
|
441 |
def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
442 |
# Compute average performance for each professional category (using professional_mapping).
|
443 |
melt_vars = []
|
444 |
for category, tasks in professional_mapping.items():
|
445 |
+
relevant_cols = [
|
446 |
+
col for col in df.columns if "iberbench/" + col in tasks
|
447 |
+
]
|
448 |
if relevant_cols:
|
449 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
450 |
melt_vars.append(category)
|
|
|
452 |
id_vars = model_columns.copy()
|
453 |
if "language" in df.columns:
|
454 |
id_vars.append("language")
|
455 |
+
df_melt = df.melt(
|
456 |
+
id_vars=id_vars,
|
457 |
+
value_vars=melt_vars,
|
458 |
+
var_name="Task Category",
|
459 |
+
value_name="Performance",
|
460 |
+
)
|
461 |
fig = px.box(
|
462 |
+
df_melt,
|
463 |
+
x="Task Category",
|
464 |
+
y="Performance",
|
465 |
+
points="all",
|
466 |
+
labels={"Performance": "Performance (%)"},
|
467 |
+
)
|
468 |
+
st.plotly_chart(
|
469 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
470 |
)
|
471 |
+
|
472 |
|
473 |
def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
474 |
# Compute average performance for each semantic category defined in semantic_categories.
|
475 |
melt_vars = []
|
476 |
for category, tasks in semantic_categories.items():
|
477 |
+
relevant_cols = [
|
478 |
+
col for col in df.columns if "iberbench/" + col in tasks
|
479 |
+
]
|
480 |
if relevant_cols:
|
481 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
482 |
melt_vars.append(category)
|
|
|
484 |
id_vars = model_columns.copy()
|
485 |
if "language" in df.columns:
|
486 |
id_vars.append("language")
|
487 |
+
df_melt = df.melt(
|
488 |
+
id_vars=id_vars,
|
489 |
+
value_vars=melt_vars,
|
490 |
+
var_name="Task Category",
|
491 |
+
value_name="Performance",
|
492 |
+
)
|
493 |
fig = px.box(
|
494 |
+
df_melt,
|
495 |
+
x="Task Category",
|
496 |
+
y="Performance",
|
497 |
+
points="all",
|
498 |
+
labels={"Performance": "Performance (%)"},
|
499 |
)
|
500 |
+
st.plotly_chart(
|
501 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
502 |
+
)
|
503 |
+
|
504 |
|
505 |
def create_histogram(df: pd.DataFrame, id_: str):
|
506 |
fig = px.histogram(
|
507 |
+
df,
|
508 |
+
x="num_parameters",
|
509 |
+
nbins=20,
|
510 |
+
labels={"num_parameters": "Num parameters", "count": "Count"},
|
511 |
)
|
512 |
fig.update_layout(template="plotly_white")
|
513 |
+
st.plotly_chart(
|
514 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
515 |
+
)
|
516 |
|
517 |
|
518 |
def create_data_results_per_language() -> pd.DataFrame:
|
|
|
526 |
lang = key.split("leaderboard_data_")[1]
|
527 |
temp_df["language"] = lang
|
528 |
combined_df = pd.concat([combined_df, temp_df], ignore_index=True)
|
529 |
+
|
530 |
if combined_df.empty:
|
531 |
st.warning("No data available for any language ⚠️.")
|
532 |
return
|
|
|
537 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
538 |
# Exclude metadata, language, and any non-numeric columns.
|
539 |
performance_cols = [
|
540 |
+
col
|
541 |
+
for col in combined_df.columns
|
542 |
+
if col not in model_columns + ["language", "Active"]
|
543 |
and pd.api.types.is_numeric_dtype(combined_df[col])
|
544 |
]
|
545 |
if performance_cols:
|
546 |
+
combined_df["Mean"] = (
|
547 |
+
combined_df[performance_cols].mean(axis=1).round(2)
|
548 |
+
)
|
549 |
else:
|
550 |
+
st.warning(
|
551 |
+
"No numeric task performance columns available to compute 'Mean' ⚠️."
|
552 |
+
)
|
553 |
return
|
554 |
return combined_df
|
555 |
+
|
556 |
+
|
557 |
+
def create_box_plot_per_language(id_: str):
|
558 |
# Create a boxplot with performance (Mean) per language.
|
559 |
combined_df = create_data_results_per_language()
|
560 |
fig = px.box(
|
561 |
+
combined_df,
|
562 |
+
x="language",
|
563 |
+
y="Mean",
|
564 |
points="all",
|
565 |
labels={"language": "Language", "Mean": "Performance (%)"},
|
566 |
)
|
567 |
+
st.plotly_chart(
|
568 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
569 |
+
)
|
570 |
|
571 |
|
572 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
|
|
578 |
task_types = select_task_per_language(lang)
|
579 |
summary_df = get_summary_df(lang, task_types)
|
580 |
summary_df["language"] = lang
|
581 |
+
combined_df = pd.concat(
|
582 |
+
[combined_df, summary_df], ignore_index=True
|
583 |
+
)
|
584 |
return combined_df
|
585 |
|
586 |
|
|
|
590 |
across languages. Use this aggregated data for radar, scatter, pie, box, and histogram plots.
|
591 |
"""
|
592 |
df = get_all_languages_summary_df()
|
593 |
+
agg_df = df.groupby("model_name", as_index=False).agg(
|
594 |
+
{
|
595 |
+
"model_type": "first", # choose an aggregation that makes sense
|
596 |
+
"num_parameters": "mean", # average model size across languages
|
597 |
+
"Mean": "mean", # average performance
|
598 |
+
}
|
599 |
+
)
|
600 |
+
agg_df["Mean"] = agg_df["Mean"].round(2)
|
601 |
return agg_df
|
602 |
|
603 |
+
|
604 |
def get_all_languages_raw_df() -> pd.DataFrame:
|
605 |
"""
|
606 |
Combine the raw leaderboard data from all languages.
|
|
|
619 |
# -----------------------------------------------------------------------------
|
620 |
# Sidebar for Navigation and Global Settings
|
621 |
# -----------------------------------------------------------------------------
|
622 |
+
st.sidebar.markdown(
|
623 |
+
"<h2 style='text-align: center;'>IberBench 🌍</h2>", unsafe_allow_html=True
|
624 |
+
)
|
625 |
+
menu = st.sidebar.radio(
|
626 |
+
"", ["Leaderboard 📊", "Submit Model 🚀", "Datasets 📚", "About ℹ️"]
|
627 |
+
)
|
628 |
st.sidebar.markdown("---")
|
629 |
st.sidebar.markdown(
|
630 |
"""
|
|
|
635 |
unsafe_allow_html=True,
|
636 |
)
|
637 |
|
638 |
+
|
639 |
def load_languages_set():
|
640 |
with open(LANGUAGES_SETTINGS, "r") as f:
|
641 |
return yaml_load(f)
|
642 |
|
643 |
+
|
644 |
lang_set = load_languages_set()
|
645 |
|
646 |
for lang in lang_set.keys():
|
647 |
+
data = load_data(lang)
|
|
|
|
|
|
|
648 |
if f"leaderboard_data_{lang}" not in st.session_state:
|
649 |
st.session_state[f"leaderboard_data_{lang}"] = data
|
650 |
|
|
|
652 |
# Main Content based on Navigation
|
653 |
# -----------------------------------------------------------------------------
|
654 |
if menu == "Leaderboard 📊":
|
655 |
+
st.markdown(
|
656 |
+
"<div class='main-header'><h1>Leaderboard 📊</h1></div>",
|
657 |
+
unsafe_allow_html=True,
|
658 |
+
)
|
659 |
+
lang_iber = [
|
660 |
+
k
|
661 |
+
for k, v in lang_set.items()
|
662 |
+
if v["category"] == "Iberian Peninsula languages"
|
663 |
+
]
|
664 |
st.markdown("### General ranking 🏆")
|
665 |
+
|
666 |
# ---------------------------
|
667 |
# All-language plots section
|
668 |
# ---------------------------
|
669 |
+
# Use aggregated data for plots where each model must appear once with averaged values.
|
670 |
aggregated_df = get_all_languages_aggregated_summary_df()
|
671 |
create_table_all_results(aggregated_df)
|
672 |
st.markdown("### General plots 📊")
|
673 |
# Use raw data for Fundamental vs Professional and Task Category plots.
|
674 |
raw_all_df = get_all_languages_raw_df()
|
675 |
+
all_lang_tabs = st.tabs(
|
676 |
+
[
|
677 |
+
"Top 10 performance 🥇",
|
678 |
+
"Performance vs. size 📏",
|
679 |
+
"Type distribution 🎨",
|
680 |
+
"Performance per type 💡",
|
681 |
+
"Distribution of sizes 📊",
|
682 |
+
"Fundamental vs industry ⚖️",
|
683 |
+
"Performance per task category 📈",
|
684 |
+
"Performance per language 🌐",
|
685 |
+
]
|
686 |
+
)
|
687 |
with all_lang_tabs[0]:
|
688 |
create_radar_chart(aggregated_df, "all_radar")
|
689 |
with all_lang_tabs[1]:
|
|
|
701 |
create_box_plot_per_semantic_category(raw_all_df, "all_box_sem_cat")
|
702 |
with all_lang_tabs[7]:
|
703 |
create_box_plot_per_language("all_box_language")
|
704 |
+
|
705 |
+
# Results per language
|
706 |
st.markdown("---")
|
707 |
st.markdown("### Language ranking 🏆")
|
708 |
+
lang_choice = st.selectbox(
|
709 |
+
"Select a language 🌐:", list(lang_iber), key="lang_leaderboard"
|
710 |
+
)
|
711 |
if lang_choice == "Spanish":
|
712 |
+
variations = [
|
713 |
+
k
|
714 |
+
for k, v in lang_set.items()
|
715 |
+
if v["category"] in ["Spanish Variations languages"]
|
716 |
+
]
|
717 |
tabs_var = st.tabs(variations)
|
718 |
for var, tab in zip(variations, tabs_var):
|
719 |
with tab:
|
|
|
722 |
create_results_visualization_lang(lang_choice)
|
723 |
|
724 |
elif menu == "Submit Model 🚀":
|
725 |
+
st.markdown(
|
726 |
+
"<div class='main-header'><h1>Submit Your Model 🚀</h1></div>",
|
727 |
+
unsafe_allow_html=True,
|
728 |
+
)
|
729 |
st.markdown("## How to submit a model 📤")
|
730 |
|
731 |
# CSS
|
732 |
+
st.markdown(
|
733 |
+
"""
|
734 |
<style>
|
735 |
.card-container {
|
736 |
max-width: 300px;
|
|
|
768 |
margin-left: 8px;
|
769 |
}
|
770 |
</style>
|
771 |
+
""",
|
772 |
+
unsafe_allow_html=True,
|
773 |
+
)
|
774 |
|
775 |
def render_card(content):
|
776 |
html = f"""
|
|
|
802 |
index = row * num_columns + col
|
803 |
if index < len(guide_info_list):
|
804 |
with cols[col]:
|
805 |
+
st.markdown(
|
806 |
+
render_card(guide_info_list[index]),
|
807 |
+
unsafe_allow_html=True,
|
808 |
+
)
|
809 |
|
810 |
st.markdown("## Submission form 📝")
|
811 |
with st.form("submit_model_form", clear_on_submit=True):
|
|
|
817 |
"Description ✍️",
|
818 |
help="Add a description of the proposed model for the evaluation to help prioritize its evaluation.",
|
819 |
)
|
820 |
+
user_contact = st.text_input(
|
821 |
+
"Your Contact Email 📧",
|
822 |
+
help="User e-mail to contact when there are updates.",
|
823 |
+
)
|
824 |
precision_option = st.selectbox(
|
825 |
"Choose precision format 🔢:",
|
826 |
help="Size limits vary by precision. Choose carefully as incorrect precision can cause evaluation errors.",
|
|
|
833 |
options=["Original", "Adapter", "Delta"],
|
834 |
index=0,
|
835 |
)
|
836 |
+
base_model_name = st.text_input(
|
837 |
+
"Base model (if applicable) 🏗️",
|
838 |
+
help="Required for delta weights or adapters. This helps calculate total parameter count.",
|
839 |
+
value="",
|
840 |
+
)
|
841 |
model_type = st.selectbox(
|
842 |
"Choose model type 🔍:",
|
843 |
help="🟢 Pretrained: Base models, 🔶 Fine-tuned: Domain-specific, 💬 Chat: Conversational, 🤝 Merge: Combined weights.",
|
|
|
847 |
if submit_button:
|
848 |
use_chat_template = True if model_type == "💬 Chat" else False
|
849 |
validation_error = validate_model(
|
850 |
+
model_name,
|
851 |
+
precision_option,
|
852 |
+
base_model_name,
|
853 |
+
weight_type_option,
|
854 |
+
use_chat_template,
|
855 |
)
|
856 |
if validation_error is not None:
|
857 |
st.error(validation_error)
|
|
|
871 |
log_submission(input_dict)
|
872 |
st.success("Your request has been sent successfully 🎉.")
|
873 |
except Exception as e:
|
874 |
+
st.error(
|
875 |
+
f"Failed to send your request: {e}. Please try again later."
|
876 |
+
)
|
877 |
|
878 |
elif menu == "Datasets 📚":
|
879 |
+
st.markdown(
|
880 |
+
"<div class='main-header'><h1>Dataset Information 📚</h1></div>",
|
881 |
+
unsafe_allow_html=True,
|
882 |
+
)
|
883 |
st.markdown("### Check the datasets 🔍")
|
884 |
+
lang_iber = [
|
885 |
+
k
|
886 |
+
for k, v in lang_set.items()
|
887 |
+
if v["category"] == "Iberian Peninsula languages"
|
888 |
+
]
|
889 |
+
lang_choice = st.selectbox(
|
890 |
+
"Select a language 🌐:", list(lang_iber), key="lang_dataset"
|
891 |
+
)
|
892 |
+
if lang_choice in ["Spanish"]:
|
893 |
+
variations = [
|
894 |
+
k
|
895 |
+
for k, v in lang_set.items()
|
896 |
+
if v["category"] in ["Spanish Variations languages"]
|
897 |
+
]
|
898 |
tabs_var = st.tabs(variations)
|
899 |
for var, tab in zip(variations, tabs_var):
|
900 |
with tab:
|
901 |
+
create_dataset_info_per_language(var)
|
|
|
|
|
|
|
902 |
else:
|
903 |
create_dataset_info_per_language(lang_choice)
|
904 |
st.markdown("### Task mappings 🔄")
|
905 |
+
st.markdown(
|
906 |
+
"For the sake of completeness, here we show the mappings we use in the leaderboard to aggregate tasks."
|
907 |
+
)
|
908 |
+
tab1, tab2 = st.tabs(
|
909 |
+
["Semantic categories 🗂️", "Fundamental vs. Industry ⚖️"]
|
910 |
+
)
|
911 |
with tab1:
|
912 |
+
st.json(
|
913 |
+
{
|
914 |
+
category: [task.removeprefix("iberbench/") for task in tasks]
|
915 |
+
for category, tasks in semantic_categories.items()
|
916 |
+
}
|
917 |
+
)
|
918 |
with tab2:
|
919 |
+
st.json(
|
920 |
+
{
|
921 |
+
category: [task.removeprefix("iberbench/") for task in tasks]
|
922 |
+
for category, tasks in professional_mapping.items()
|
923 |
+
}
|
924 |
+
)
|
925 |
|
926 |
elif menu == "About ℹ️":
|
927 |
+
st.markdown(
|
928 |
+
"<div class='main-header'><h1>About ℹ️</h1></div>",
|
929 |
+
unsafe_allow_html=True,
|
930 |
+
)
|
931 |
+
with open("./assets/md/about.md", "r") as fr:
|
932 |
+
st.markdown(fr.read(), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
etc/languages_settings.yml
CHANGED
@@ -10,8 +10,8 @@ Galician:
|
|
10 |
category: 'Iberian Peninsula languages'
|
11 |
English:
|
12 |
category: 'Iberian Peninsula languages'
|
13 |
-
Mixed:
|
14 |
-
category: '
|
15 |
Costa Rica:
|
16 |
category: 'Spanish Variations languages'
|
17 |
Mexico:
|
|
|
10 |
category: 'Iberian Peninsula languages'
|
11 |
English:
|
12 |
category: 'Iberian Peninsula languages'
|
13 |
+
Spanish Mixed:
|
14 |
+
category: 'Spanish Variations languages'
|
15 |
Costa Rica:
|
16 |
category: 'Spanish Variations languages'
|
17 |
Mexico:
|