Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Load the summarization pipeline | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Define the summarization function | |
def summarize_text(input_text): | |
if not input_text.strip(): | |
return "Please provide some text to summarize." | |
try: | |
summary = summarizer(input_text, max_length=130, min_length=30, do_sample=False) | |
return summary[0]["summary_text"] | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=summarize_text, | |
inputs=gr.Textbox(lines=5, label="Input Text"), | |
outputs=gr.Textbox(label="Summarized Text"), | |
title="Text Summarizer", | |
description="Summarize long articles or paragraphs using the `facebook/bart-large-cnn` model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |