hysts's picture
hysts HF Staff
Update
55b540a
#!/usr/bin/env python
import pathlib
import tempfile
import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
DESCRIPTION = "# ViTPose"
MAX_NUM_FRAMES = 300
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
person_detector_name = "PekingU/rtdetr_r50vd_coco_o365"
person_image_processor = AutoProcessor.from_pretrained(person_detector_name)
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device)
pose_model_name = "usyd-community/vitpose-base-simple"
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name)
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device)
@spaces.GPU(duration=5)
@torch.inference_mode()
def detect_pose_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]:
"""Detects persons and estimates their poses in a single image.
Args:
image (PIL.Image.Image): Input image in which to detect persons and estimate poses.
Returns:
tuple[PIL.Image.Image, list[dict]]:
- Annotated image with bounding boxes and pose keypoints drawn.
- List of dictionaries containing human-readable pose estimation results for each detected person.
"""
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
# Human label refers 0 index in COCO dataset
person_boxes_xyxy = result["boxes"][result["labels"] == 0]
person_boxes_xyxy = person_boxes_xyxy.cpu().numpy()
# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes = person_boxes_xyxy.copy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
# for vitpose-plus-base checkpoint we should additionally provide dataset_index
# to specify which MOE experts to use for inference
if pose_model.config.backbone_config.num_experts > 1:
dataset_index = torch.tensor([0] * len(inputs["pixel_values"]))
dataset_index = dataset_index.to(inputs["pixel_values"].device)
inputs["dataset_index"] = dataset_index
outputs = pose_model(**inputs)
pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0] # results for first image
# make results more human-readable
human_readable_results = []
for i, person_pose in enumerate(image_pose_result):
data = {
"person_id": i,
"bbox": person_pose["bbox"].numpy().tolist(),
"keypoints": [],
}
for keypoint, label, score in zip(
person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True
):
keypoint_name = pose_model.config.id2label[label.item()]
x, y = keypoint
data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()})
human_readable_results.append(data)
# preprocess to torch tensor of shape (n_objects, n_keypoints, 2)
xy = [pose_result["keypoints"] for pose_result in image_pose_result]
xy = torch.stack(xy).cpu().numpy()
scores = [pose_result["scores"] for pose_result in image_pose_result]
scores = torch.stack(scores).cpu().numpy()
keypoints = sv.KeyPoints(xy=xy, confidence=scores)
detections = sv.Detections(xyxy=person_boxes_xyxy)
edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1)
vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2)
bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1)
annotated_frame = image.copy()
# annotate bounding boxes
annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections)
# annotate edges and vertices
annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints)
return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results
@spaces.GPU(duration=90)
def detect_pose_video(
video_path: str,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> str:
"""Detects persons and estimates their poses for each frame in a video, saving the annotated video.
Args:
video_path (str): Path to the input video file.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
str: Path to the output video file with annotated bounding boxes and pose keypoints.
"""
cap = cv2.VideoCapture(video_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
ok, frame = cap.read()
if not ok:
break
rgb_frame = frame[:, :, ::-1]
annotated_frame, _ = detect_pose_image(PIL.Image.fromarray(rgb_frame))
writer.write(np.asarray(annotated_frame)[:, :, ::-1])
writer.release()
cap.release()
return out_file.name
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
run_button_image = gr.Button()
with gr.Column():
output_image = gr.Image(label="Output Image")
output_json = gr.JSON(label="Output JSON")
gr.Examples(
examples=sorted(pathlib.Path("images").glob("*.jpg")),
inputs=input_image,
outputs=[output_image, output_json],
fn=detect_pose_image,
)
run_button_image.click(
fn=detect_pose_image,
inputs=input_image,
outputs=[output_image, output_json],
)
with gr.Tab("Video"):
gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
run_button_video = gr.Button()
with gr.Column():
output_video = gr.Video(label="Output Video")
gr.Examples(
examples=sorted(pathlib.Path("videos").glob("*.mp4")),
inputs=input_video,
outputs=output_video,
fn=detect_pose_video,
cache_examples=False,
)
run_button_video.click(
fn=detect_pose_video,
inputs=input_video,
outputs=output_video,
)
if __name__ == "__main__":
demo.launch(mcp_server=True)