Spaces:
Running
Running
Add files
Browse files- .gitmodules +3 -0
- app.py +159 -0
- patch +85 -0
- requirements.txt +4 -0
- stylegan2-pytorch +1 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "stylegan2-pytorch"]
|
2 |
+
path = stylegan2-pytorch
|
3 |
+
url = https://github.com/rosinality/stylegan2-pytorch
|
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
|
17 |
+
if os.environ.get('SYSTEM') == 'spaces':
|
18 |
+
subprocess.call('git apply ../patch'.split(), cwd='stylegan2-pytorch')
|
19 |
+
|
20 |
+
sys.path.insert(0, 'stylegan2-pytorch')
|
21 |
+
|
22 |
+
from model import Generator
|
23 |
+
|
24 |
+
TITLE = 'TADNE (This Anime Does Not Exist) Interpolation'
|
25 |
+
DESCRIPTION = 'The original TADNE site is https://thisanimedoesnotexist.ai/.'
|
26 |
+
ARTICLE = None
|
27 |
+
|
28 |
+
TOKEN = os.environ['TOKEN']
|
29 |
+
|
30 |
+
|
31 |
+
def parse_args() -> argparse.Namespace:
|
32 |
+
parser = argparse.ArgumentParser()
|
33 |
+
parser.add_argument('--device', type=str, default='cpu')
|
34 |
+
parser.add_argument('--theme', type=str)
|
35 |
+
parser.add_argument('--live', action='store_true')
|
36 |
+
parser.add_argument('--share', action='store_true')
|
37 |
+
parser.add_argument('--port', type=int)
|
38 |
+
parser.add_argument('--disable-queue',
|
39 |
+
dest='enable_queue',
|
40 |
+
action='store_false')
|
41 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
42 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
43 |
+
return parser.parse_args()
|
44 |
+
|
45 |
+
|
46 |
+
def load_model(device: torch.device) -> nn.Module:
|
47 |
+
model = Generator(512, 1024, 4, channel_multiplier=2)
|
48 |
+
path = hf_hub_download('hysts/TADNE',
|
49 |
+
'models/aydao-anime-danbooru2019s-512-5268480.pt',
|
50 |
+
use_auth_token=TOKEN)
|
51 |
+
checkpoint = torch.load(path)
|
52 |
+
model.load_state_dict(checkpoint['g_ema'])
|
53 |
+
model.eval()
|
54 |
+
model.to(device)
|
55 |
+
model.latent_avg = checkpoint['latent_avg'].to(device)
|
56 |
+
with torch.inference_mode():
|
57 |
+
z = torch.zeros((1, model.style_dim)).to(device)
|
58 |
+
model([z], truncation=0.7, truncation_latent=model.latent_avg)
|
59 |
+
return model
|
60 |
+
|
61 |
+
|
62 |
+
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
|
63 |
+
return torch.from_numpy(np.random.RandomState(seed).randn(
|
64 |
+
1, z_dim)).to(device).float()
|
65 |
+
|
66 |
+
|
67 |
+
@torch.inference_mode()
|
68 |
+
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
|
69 |
+
randomize_noise: bool) -> np.ndarray:
|
70 |
+
out, _ = model([z],
|
71 |
+
truncation=truncation_psi,
|
72 |
+
truncation_latent=model.latent_avg,
|
73 |
+
randomize_noise=randomize_noise)
|
74 |
+
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
75 |
+
return out[0].cpu().numpy()
|
76 |
+
|
77 |
+
|
78 |
+
@torch.inference_mode()
|
79 |
+
def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
|
80 |
+
psi0: float, psi1: float,
|
81 |
+
randomize_noise: bool, model: nn.Module,
|
82 |
+
device: torch.device) -> np.ndarray:
|
83 |
+
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
|
84 |
+
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
|
85 |
+
|
86 |
+
z0 = generate_z(model.style_dim, seed0, device)
|
87 |
+
if num_intermediate == -1:
|
88 |
+
out = generate_image(model, z0, psi0, randomize_noise)
|
89 |
+
return out
|
90 |
+
|
91 |
+
z1 = generate_z(model.style_dim, seed1, device)
|
92 |
+
vec = z1 - z0
|
93 |
+
dvec = vec / (num_intermediate + 1)
|
94 |
+
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
|
95 |
+
dpsi = (psi1 - psi0) / (num_intermediate + 1)
|
96 |
+
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
|
97 |
+
res = []
|
98 |
+
for z, psi in zip(zs, psis):
|
99 |
+
out = generate_image(model, z, psi, randomize_noise)
|
100 |
+
res.append(out)
|
101 |
+
res = np.hstack(res)
|
102 |
+
return res
|
103 |
+
|
104 |
+
|
105 |
+
def main():
|
106 |
+
gr.close_all()
|
107 |
+
|
108 |
+
args = parse_args()
|
109 |
+
device = torch.device(args.device)
|
110 |
+
|
111 |
+
model = load_model(device)
|
112 |
+
|
113 |
+
func = functools.partial(generate_interpolated_images,
|
114 |
+
model=model,
|
115 |
+
device=device)
|
116 |
+
func = functools.update_wrapper(func, generate_interpolated_images)
|
117 |
+
|
118 |
+
examples = [
|
119 |
+
[29703, 55376, 3, 0.7, 0.7, False],
|
120 |
+
[34141, 36864, 5, 0.7, 0.7, False],
|
121 |
+
[74650, 88322, 7, 0.7, 0.7, False],
|
122 |
+
[84314, 70317410, 9, 0.7, 0.7, False],
|
123 |
+
[55376, 55376, 5, 0.3, 1.3, False],
|
124 |
+
]
|
125 |
+
|
126 |
+
gr.Interface(
|
127 |
+
func,
|
128 |
+
[
|
129 |
+
gr.inputs.Number(default=29703, label='Seed 1'),
|
130 |
+
gr.inputs.Number(default=55376, label='Seed 2'),
|
131 |
+
gr.inputs.Slider(-1,
|
132 |
+
11,
|
133 |
+
step=1,
|
134 |
+
default=3,
|
135 |
+
label='Number of Intermediate Frames'),
|
136 |
+
gr.inputs.Slider(
|
137 |
+
0, 2, step=0.05, default=0.7, label='Truncation psi 1'),
|
138 |
+
gr.inputs.Slider(
|
139 |
+
0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
|
140 |
+
gr.inputs.Checkbox(default=False, label='Randomize Noise'),
|
141 |
+
],
|
142 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
143 |
+
examples=examples,
|
144 |
+
title=TITLE,
|
145 |
+
description=DESCRIPTION,
|
146 |
+
article=ARTICLE,
|
147 |
+
theme=args.theme,
|
148 |
+
allow_screenshot=args.allow_screenshot,
|
149 |
+
allow_flagging=args.allow_flagging,
|
150 |
+
live=args.live,
|
151 |
+
).launch(
|
152 |
+
enable_queue=args.enable_queue,
|
153 |
+
server_port=args.port,
|
154 |
+
share=args.share,
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == '__main__':
|
159 |
+
main()
|
patch
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/model.py b/model.py
|
2 |
+
index 0134c39..3a7826c 100755
|
3 |
+
--- a/model.py
|
4 |
+
+++ b/model.py
|
5 |
+
@@ -395,6 +395,7 @@ class Generator(nn.Module):
|
6 |
+
style_dim,
|
7 |
+
n_mlp,
|
8 |
+
channel_multiplier=2,
|
9 |
+
+ additional_multiplier=2,
|
10 |
+
blur_kernel=[1, 3, 3, 1],
|
11 |
+
lr_mlp=0.01,
|
12 |
+
):
|
13 |
+
@@ -426,6 +427,9 @@ class Generator(nn.Module):
|
14 |
+
512: 32 * channel_multiplier,
|
15 |
+
1024: 16 * channel_multiplier,
|
16 |
+
}
|
17 |
+
+ if additional_multiplier > 1:
|
18 |
+
+ for k in list(self.channels.keys()):
|
19 |
+
+ self.channels[k] *= additional_multiplier
|
20 |
+
|
21 |
+
self.input = ConstantInput(self.channels[4])
|
22 |
+
self.conv1 = StyledConv(
|
23 |
+
@@ -518,7 +522,7 @@ class Generator(nn.Module):
|
24 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
25 |
+
]
|
26 |
+
|
27 |
+
- if truncation < 1:
|
28 |
+
+ if truncation_latent is not None:
|
29 |
+
style_t = []
|
30 |
+
|
31 |
+
for style in styles:
|
32 |
+
diff --git a/op/fused_act.py b/op/fused_act.py
|
33 |
+
index 5d46e10..bc522ed 100755
|
34 |
+
--- a/op/fused_act.py
|
35 |
+
+++ b/op/fused_act.py
|
36 |
+
@@ -1,5 +1,3 @@
|
37 |
+
-import os
|
38 |
+
-
|
39 |
+
import torch
|
40 |
+
from torch import nn
|
41 |
+
from torch.nn import functional as F
|
42 |
+
@@ -7,16 +5,6 @@ from torch.autograd import Function
|
43 |
+
from torch.utils.cpp_extension import load
|
44 |
+
|
45 |
+
|
46 |
+
-module_path = os.path.dirname(__file__)
|
47 |
+
-fused = load(
|
48 |
+
- "fused",
|
49 |
+
- sources=[
|
50 |
+
- os.path.join(module_path, "fused_bias_act.cpp"),
|
51 |
+
- os.path.join(module_path, "fused_bias_act_kernel.cu"),
|
52 |
+
- ],
|
53 |
+
-)
|
54 |
+
-
|
55 |
+
-
|
56 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
57 |
+
@staticmethod
|
58 |
+
def forward(ctx, grad_output, out, bias, negative_slope, scale):
|
59 |
+
diff --git a/op/upfirdn2d.py b/op/upfirdn2d.py
|
60 |
+
index 67e0375..6c5840e 100755
|
61 |
+
--- a/op/upfirdn2d.py
|
62 |
+
+++ b/op/upfirdn2d.py
|
63 |
+
@@ -1,5 +1,4 @@
|
64 |
+
from collections import abc
|
65 |
+
-import os
|
66 |
+
|
67 |
+
import torch
|
68 |
+
from torch.nn import functional as F
|
69 |
+
@@ -7,16 +6,6 @@ from torch.autograd import Function
|
70 |
+
from torch.utils.cpp_extension import load
|
71 |
+
|
72 |
+
|
73 |
+
-module_path = os.path.dirname(__file__)
|
74 |
+
-upfirdn2d_op = load(
|
75 |
+
- "upfirdn2d",
|
76 |
+
- sources=[
|
77 |
+
- os.path.join(module_path, "upfirdn2d.cpp"),
|
78 |
+
- os.path.join(module_path, "upfirdn2d_kernel.cu"),
|
79 |
+
- ],
|
80 |
+
-)
|
81 |
+
-
|
82 |
+
-
|
83 |
+
class UpFirDn2dBackward(Function):
|
84 |
+
@staticmethod
|
85 |
+
def forward(
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.22.3
|
2 |
+
Pillow==9.0.1
|
3 |
+
torch==1.11.0
|
4 |
+
torchvision==0.12.0
|
stylegan2-pytorch
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit bef283a1c24087da704d16c30abc8e36e63efa0e
|