hysts's picture
hysts HF staff
Update
42bbd75
#!/usr/bin/env python
import pathlib
import sys
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from huggingface_hub import hf_hub_download
from torch import nn
submodule_dir = pathlib.Path(__file__).parent / "MangaLineExtraction_PyTorch"
sys.path.append(submodule_dir.as_posix())
from model_torch import res_skip # type: ignore # noqa: E402
DESCRIPTION = "# [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch)"
def load_model(device: torch.device) -> nn.Module:
ckpt_path = hf_hub_download("public-data/MangaLineExtraction_PyTorch", "erika.pth")
state_dict = torch.load(ckpt_path)
model = res_skip()
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
MAX_SIZE = 1000
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
@spaces.GPU
@torch.inference_mode()
def predict(image: np.ndarray) -> np.ndarray:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
if max(gray.shape) > MAX_SIZE:
scale = MAX_SIZE / max(gray.shape)
gray = cv2.resize(gray, None, fx=scale, fy=scale)
h, w = gray.shape
size = 16
new_w = (w + size - 1) // size * size
new_h = (h + size - 1) // size * size
patch = np.ones((1, 1, new_h, new_w), dtype=np.float32)
patch[0, 0, :h, :w] = gray
tensor = torch.from_numpy(patch).to(device)
out = model(tensor)
res = out.cpu().numpy()[0, 0, :h, :w]
return np.clip(res, 0, 255).astype(np.uint8)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input", type="numpy")
run_button = gr.Button()
with gr.Column():
result = gr.Image(label="Result", elem_id="result")
run_button.click(
fn=predict,
inputs=input_image,
outputs=result,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()