File size: 3,778 Bytes
51b9889
 
 
 
 
 
 
 
14ab8b5
51b9889
 
 
 
 
 
 
 
968b2dd
d6cc1c7
adcea9c
51b9889
24e13ce
14ab8b5
 
 
51b9889
 
 
 
 
 
 
 
 
 
14ab8b5
 
 
 
51b9889
14ab8b5
51b9889
24e13ce
14ab8b5
 
 
51b9889
 
14ab8b5
 
 
24e13ce
14ab8b5
 
51b9889
 
14ab8b5
 
 
24e13ce
14ab8b5
 
 
 
 
 
5a83f21
51b9889
 
 
 
 
 
 
 
 
 
 
 
d5ecdd2
51b9889
 
 
5a83f21
51b9889
 
 
 
 
14ab8b5
51b9889
 
 
14ab8b5
 
51b9889
 
 
 
 
 
cfd07e9
 
 
 
7be8f37
cfd07e9
51b9889
5a83f21
51b9889
968b2dd
 
 
fcd1fa8
51b9889
fcd1fa8
51b9889
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import tarfile

import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf

TITLE = 'KichangKim/DeepDanbooru'
DESCRIPTION = 'This is an unofficial demo for https://github.com/KichangKim/DeepDanbooru.'
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.deepdanbooru" alt="visitor badge"/></center>'

HF_TOKEN = os.environ['HF_TOKEN']
MODEL_REPO = 'hysts/DeepDanbooru'
MODEL_FILENAME = 'model-resnet_custom_v3.h5'
LABEL_FILENAME = 'tags.txt'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--score-slider-step', type=float, default=0.05)
    parser.add_argument('--score-threshold', type=float, default=0.5)
    parser.add_argument('--share', action='store_true')
    return parser.parse_args()


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        dataset_repo = 'hysts/sample-images-TADNE'
        path = huggingface_hub.hf_hub_download(dataset_repo,
                                               'images.tar.gz',
                                               repo_type='dataset',
                                               use_auth_token=HF_TOKEN)
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob('*'))


def load_model() -> tf.keras.Model:
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           MODEL_FILENAME,
                                           use_auth_token=HF_TOKEN)
    model = tf.keras.models.load_model(path)
    return model


def load_labels() -> list[str]:
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           LABEL_FILENAME,
                                           use_auth_token=HF_TOKEN)
    with open(path) as f:
        labels = [line.strip() for line in f.readlines()]
    return labels


def predict(image: PIL.Image.Image, score_threshold: float,
            model: tf.keras.Model, labels: list[str]) -> dict[str, float]:
    _, height, width, _ = model.input_shape
    image = np.asarray(image)
    image = tf.image.resize(image,
                            size=(height, width),
                            method=tf.image.ResizeMethod.AREA,
                            preserve_aspect_ratio=True)
    image = image.numpy()
    image = dd.image.transform_and_pad_image(image, width, height)
    image = image / 255.
    probs = model.predict(image[None, ...])[0]
    probs = probs.astype(float)
    res = dict()
    for prob, label in zip(probs.tolist(), labels):
        if prob < score_threshold:
            continue
        res[label] = prob
    return res


def main():
    args = parse_args()

    image_paths = load_sample_image_paths()
    examples = [[path.as_posix(), args.score_threshold]
                for path in image_paths]

    model = load_model()
    labels = load_labels()

    func = functools.partial(predict, model=model, labels=labels)

    gr.Interface(
        func,
        [
            gr.Image(type='pil', label='Input'),
            gr.Slider(0,
                      1,
                      step=args.score_slider_step,
                      value=args.score_threshold,
                      label='Score Threshold'),
        ],
        gr.Label(label='Output'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        allow_flagging='never',
    ).launch(
        enable_queue=True,
        share=args.share,
    )


if __name__ == '__main__':
    main()