hysts HF staff commited on
Commit
d9db1f6
·
1 Parent(s): af06893
Files changed (8) hide show
  1. .pre-commit-config.yaml +59 -35
  2. .style.yapf +0 -5
  3. .vscode/settings.json +30 -0
  4. README.md +1 -2
  5. app.py +16 -16
  6. app_colorization.py +18 -19
  7. app_superresolution.py +36 -39
  8. style.css +1 -0
.pre-commit-config.yaml CHANGED
@@ -1,36 +1,60 @@
1
  repos:
2
- - repo: https://github.com/pre-commit/pre-commit-hooks
3
- rev: v4.2.0
4
- hooks:
5
- - id: check-executables-have-shebangs
6
- - id: check-json
7
- - id: check-merge-conflict
8
- - id: check-shebang-scripts-are-executable
9
- - id: check-toml
10
- - id: check-yaml
11
- - id: double-quote-string-fixer
12
- - id: end-of-file-fixer
13
- - id: mixed-line-ending
14
- args: ['--fix=lf']
15
- - id: requirements-txt-fixer
16
- - id: trailing-whitespace
17
- - repo: https://github.com/myint/docformatter
18
- rev: v1.4
19
- hooks:
20
- - id: docformatter
21
- args: ['--in-place']
22
- - repo: https://github.com/pycqa/isort
23
- rev: 5.12.0
24
- hooks:
25
- - id: isort
26
- - repo: https://github.com/pre-commit/mirrors-mypy
27
- rev: v0.991
28
- hooks:
29
- - id: mypy
30
- args: ['--ignore-missing-imports']
31
- additional_dependencies: ['types-python-slugify']
32
- - repo: https://github.com/google/yapf
33
- rev: v0.32.0
34
- hooks:
35
- - id: yapf
36
- args: ['--parallel', '--in-place']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.6.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.13.2
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.10.0
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ [
33
+ "types-python-slugify",
34
+ "types-requests",
35
+ "types-PyYAML",
36
+ "types-pytz",
37
+ ]
38
+ - repo: https://github.com/psf/black
39
+ rev: 24.4.2
40
+ hooks:
41
+ - id: black
42
+ language_version: python3.10
43
+ args: ["--line-length", "119"]
44
+ - repo: https://github.com/kynan/nbstripout
45
+ rev: 0.7.1
46
+ hooks:
47
+ - id: nbstripout
48
+ args:
49
+ [
50
+ "--extra-keys",
51
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
52
+ ]
53
+ - repo: https://github.com/nbQA-dev/nbQA
54
+ rev: 1.8.5
55
+ hooks:
56
+ - id: nbqa-black
57
+ - id: nbqa-pyupgrade
58
+ args: ["--py37-plus"]
59
+ - id: nbqa-isort
60
+ args: ["--float-to-top"]
.style.yapf DELETED
@@ -1,5 +0,0 @@
1
- [style]
2
- based_on_style = pep8
3
- blank_line_before_nested_class_or_def = false
4
- spaces_before_comment = 2
5
- split_before_logical_operator = true
 
 
 
 
 
 
.vscode/settings.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "ms-python.black-formatter",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.organizeImports": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "black-formatter.args": [
15
+ "--line-length=119"
16
+ ],
17
+ "isort.args": ["--profile", "black"],
18
+ "flake8.args": [
19
+ "--max-line-length=119"
20
+ ],
21
+ "ruff.lint.args": [
22
+ "--line-length=119"
23
+ ],
24
+ "notebook.output.scrolling": true,
25
+ "notebook.formatOnCellExecution": true,
26
+ "notebook.formatOnSave.enabled": true,
27
+ "notebook.codeActionsOnSave": {
28
+ "source.organizeImports": "explicit"
29
+ }
30
+ }
README.md CHANGED
@@ -4,8 +4,7 @@ emoji: 👀
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 3.36.1
8
- python_version: 3.10.11
9
  app_file: app.py
10
  pinned: false
11
  license: cc-by-nc-sa-4.0
 
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.36.1
 
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-nc-sa-4.0
app.py CHANGED
@@ -13,31 +13,31 @@ import torch
13
  from app_colorization import create_demo as create_demo_colorization
14
  from app_superresolution import create_demo as create_demo_superresolution
15
 
16
- DESCRIPTION = '# [DDNM-HQ](https://github.com/wyhuai/DDNM/tree/main/hq_demo)'
17
 
18
- if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
19
  DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
20
  if not torch.cuda.is_available():
21
- DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
22
 
23
  if torch.cuda.is_available():
24
- MODEL_DIR = pathlib.Path('DDNM/hq_demo/data/pretrained')
25
  if not MODEL_DIR.exists():
26
  MODEL_DIR.mkdir()
27
- subprocess.run(shlex.split(
28
- 'wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt'
29
- ),
30
- cwd=MODEL_DIR.as_posix())
31
- subprocess.run(shlex.split(
32
- 'wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt'
33
- ),
34
- cwd=MODEL_DIR.as_posix())
35
-
36
- with gr.Blocks(css='style.css') as demo:
37
  gr.Markdown(DESCRIPTION)
38
  with gr.Tabs():
39
- with gr.TabItem(label='Super-resolution'):
40
  create_demo_superresolution()
41
- with gr.TabItem(label='Colorization'):
42
  create_demo_colorization()
43
  demo.queue(api_open=False, max_size=5).launch()
 
13
  from app_colorization import create_demo as create_demo_colorization
14
  from app_superresolution import create_demo as create_demo_superresolution
15
 
16
+ DESCRIPTION = "# [DDNM-HQ](https://github.com/wyhuai/DDNM/tree/main/hq_demo)"
17
 
18
+ if (SPACE_ID := os.getenv("SPACE_ID")) is not None:
19
  DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
20
  if not torch.cuda.is_available():
21
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
22
 
23
  if torch.cuda.is_available():
24
+ MODEL_DIR = pathlib.Path("DDNM/hq_demo/data/pretrained")
25
  if not MODEL_DIR.exists():
26
  MODEL_DIR.mkdir()
27
+ subprocess.run(
28
+ shlex.split("wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt"),
29
+ cwd=MODEL_DIR.as_posix(),
30
+ )
31
+ subprocess.run(
32
+ shlex.split("wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt"),
33
+ cwd=MODEL_DIR.as_posix(),
34
+ )
35
+
36
+ with gr.Blocks(css="style.css") as demo:
37
  gr.Markdown(DESCRIPTION)
38
  with gr.Tabs():
39
+ with gr.TabItem(label="Super-resolution"):
40
  create_demo_superresolution()
41
+ with gr.TabItem(label="Colorization"):
42
  create_demo_colorization()
43
  demo.queue(api_open=False, max_size=5).launch()
app_colorization.py CHANGED
@@ -10,43 +10,42 @@ import gradio as gr
10
 
11
 
12
  def run(image_path: str, class_index: int, sigma_y: float) -> str:
13
- out_name = image_path.split('/')[-1].split('.')[0]
14
- subprocess.run(shlex.split(
15
- f'python main.py --config confs/inet256.yml --deg colorization --scale 1 --class {class_index} --path_y {image_path} --save_path {out_name} --sigma_y {sigma_y}'
16
- ),
17
- cwd='DDNM/hq_demo')
18
- return f'DDNM/hq_demo/results/{out_name}/final/00000.png'
 
 
19
 
20
 
21
  def create_demo():
22
  examples = [
23
  [
24
- 'sample_images/monarch_gray.png',
25
- 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
26
  0,
27
  ],
28
  [
29
- 'sample_images/tiger_gray.png',
30
- 'tiger, Panthera tigris',
31
  0,
32
  ],
33
  ]
34
 
35
- with open('imagenet_classes.json') as f:
36
  imagenet_class_names = json.load(f)
37
 
38
  with gr.Blocks() as demo:
39
  with gr.Row():
40
  with gr.Column():
41
- image = gr.Image(label='Input image', type='filepath')
42
- class_index = gr.Dropdown(label='Class name',
43
- choices=imagenet_class_names,
44
- type='index',
45
- value=950)
46
- sigma_y = gr.Number(label='sigma_y', value=0, precision=2)
47
- run_button = gr.Button('Run')
48
  with gr.Column():
49
- result = gr.Image(label='Result', type='filepath')
50
 
51
  gr.Examples(
52
  examples=examples,
 
10
 
11
 
12
  def run(image_path: str, class_index: int, sigma_y: float) -> str:
13
+ out_name = image_path.split("/")[-1].split(".")[0]
14
+ subprocess.run(
15
+ shlex.split(
16
+ f"python main.py --config confs/inet256.yml --deg colorization --scale 1 --class {class_index} --path_y {image_path} --save_path {out_name} --sigma_y {sigma_y}"
17
+ ),
18
+ cwd="DDNM/hq_demo",
19
+ )
20
+ return f"DDNM/hq_demo/results/{out_name}/final/00000.png"
21
 
22
 
23
  def create_demo():
24
  examples = [
25
  [
26
+ "sample_images/monarch_gray.png",
27
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
28
  0,
29
  ],
30
  [
31
+ "sample_images/tiger_gray.png",
32
+ "tiger, Panthera tigris",
33
  0,
34
  ],
35
  ]
36
 
37
+ with open("imagenet_classes.json") as f:
38
  imagenet_class_names = json.load(f)
39
 
40
  with gr.Blocks() as demo:
41
  with gr.Row():
42
  with gr.Column():
43
+ image = gr.Image(label="Input image", type="filepath")
44
+ class_index = gr.Dropdown(label="Class name", choices=imagenet_class_names, type="index", value=950)
45
+ sigma_y = gr.Number(label="sigma_y", value=0, precision=2)
46
+ run_button = gr.Button("Run")
 
 
 
47
  with gr.Column():
48
+ result = gr.Image(label="Result", type="filepath")
49
 
50
  gr.Examples(
51
  examples=examples,
app_superresolution.py CHANGED
@@ -10,78 +10,75 @@ import gradio as gr
10
 
11
 
12
  def run(image_path: str, class_index: int, scale: str, sigma_y: float) -> str:
13
- out_name = image_path.split('/')[-1].split('.')[0]
14
- subprocess.run(shlex.split(
15
- f'python main.py --config confs/inet256.yml --resize_y --deg sr_averagepooling --scale {scale} --class {class_index} --path_y {image_path} --save_path {out_name} --sigma_y {sigma_y}'
16
- ),
17
- cwd='DDNM/hq_demo')
18
- return f'DDNM/hq_demo/results/{out_name}/final/00000.png'
 
 
19
 
20
 
21
  def create_demo():
22
  examples = [
23
  [
24
- 'DDNM/hq_demo/data/datasets/gts/inet256/323.png',
25
- 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
26
- '4',
27
  0,
28
  ],
29
  [
30
- 'DDNM/hq_demo/data/datasets/gts/inet256/orange.png',
31
- 'orange',
32
- '4',
33
  0,
34
  ],
35
  [
36
- 'DDNM/hq_demo/data/datasets/gts/inet256/monarch.png',
37
- 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
38
- '4',
39
  0.5,
40
  ],
41
  [
42
- 'DDNM/hq_demo/data/datasets/gts/inet256/bear.png',
43
- 'brown bear, bruin, Ursus arctos',
44
- '4',
45
  0,
46
  ],
47
  [
48
- 'DDNM/hq_demo/data/datasets/gts/inet256/flamingo.png',
49
- 'flamingo',
50
- '2',
51
  0,
52
  ],
53
  [
54
- 'DDNM/hq_demo/data/datasets/gts/inet256/kimono.png',
55
- 'kimono',
56
- '2',
57
  0,
58
  ],
59
  [
60
- 'DDNM/hq_demo/data/datasets/gts/inet256/zebra.png',
61
- 'zebra',
62
- '4',
63
  0,
64
  ],
65
  ]
66
 
67
- with open('imagenet_classes.json') as f:
68
  imagenet_class_names = json.load(f)
69
 
70
  with gr.Blocks() as demo:
71
  with gr.Row():
72
  with gr.Column():
73
- image = gr.Image(label='Input image', type='filepath')
74
- class_index = gr.Dropdown(label='Class name',
75
- choices=imagenet_class_names,
76
- type='index',
77
- value=950)
78
- scale = gr.Dropdown(label='Scale',
79
- choices=['2', '4', '8'],
80
- value='4')
81
- sigma_y = gr.Number(label='sigma_y', value=0, precision=2)
82
- run_button = gr.Button('Run')
83
  with gr.Column():
84
- result = gr.Image(label='Result', type='filepath')
85
 
86
  gr.Examples(
87
  examples=examples,
 
10
 
11
 
12
  def run(image_path: str, class_index: int, scale: str, sigma_y: float) -> str:
13
+ out_name = image_path.split("/")[-1].split(".")[0]
14
+ subprocess.run(
15
+ shlex.split(
16
+ f"python main.py --config confs/inet256.yml --resize_y --deg sr_averagepooling --scale {scale} --class {class_index} --path_y {image_path} --save_path {out_name} --sigma_y {sigma_y}"
17
+ ),
18
+ cwd="DDNM/hq_demo",
19
+ )
20
+ return f"DDNM/hq_demo/results/{out_name}/final/00000.png"
21
 
22
 
23
  def create_demo():
24
  examples = [
25
  [
26
+ "DDNM/hq_demo/data/datasets/gts/inet256/323.png",
27
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
28
+ "4",
29
  0,
30
  ],
31
  [
32
+ "DDNM/hq_demo/data/datasets/gts/inet256/orange.png",
33
+ "orange",
34
+ "4",
35
  0,
36
  ],
37
  [
38
+ "DDNM/hq_demo/data/datasets/gts/inet256/monarch.png",
39
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
40
+ "4",
41
  0.5,
42
  ],
43
  [
44
+ "DDNM/hq_demo/data/datasets/gts/inet256/bear.png",
45
+ "brown bear, bruin, Ursus arctos",
46
+ "4",
47
  0,
48
  ],
49
  [
50
+ "DDNM/hq_demo/data/datasets/gts/inet256/flamingo.png",
51
+ "flamingo",
52
+ "2",
53
  0,
54
  ],
55
  [
56
+ "DDNM/hq_demo/data/datasets/gts/inet256/kimono.png",
57
+ "kimono",
58
+ "2",
59
  0,
60
  ],
61
  [
62
+ "DDNM/hq_demo/data/datasets/gts/inet256/zebra.png",
63
+ "zebra",
64
+ "4",
65
  0,
66
  ],
67
  ]
68
 
69
+ with open("imagenet_classes.json") as f:
70
  imagenet_class_names = json.load(f)
71
 
72
  with gr.Blocks() as demo:
73
  with gr.Row():
74
  with gr.Column():
75
+ image = gr.Image(label="Input image", type="filepath")
76
+ class_index = gr.Dropdown(label="Class name", choices=imagenet_class_names, type="index", value=950)
77
+ scale = gr.Dropdown(label="Scale", choices=["2", "4", "8"], value="4")
78
+ sigma_y = gr.Number(label="sigma_y", value=0, precision=2)
79
+ run_button = gr.Button("Run")
 
 
 
 
 
80
  with gr.Column():
81
+ result = gr.Image(label="Result", type="filepath")
82
 
83
  gr.Examples(
84
  examples=examples,
style.css CHANGED
@@ -1,3 +1,4 @@
1
  h1 {
2
  text-align: center;
 
3
  }
 
1
  h1 {
2
  text-align: center;
3
+ display: block;
4
  }