Upload 8 files
Browse files- app.py +267 -0
- ckpt/ckpt_final/D_latest.pth +3 -0
- ckpt/ckpt_final/G_latest.pth +3 -0
- infer/generate/easysr_generated_data_will_be_here_in.txt +0 -0
- infer/input/input_your_infer_data_here.txt +0 -0
- network/discriminator.py +51 -0
- network/generator.py +69 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import nibabel as nib
|
4 |
+
import torch
|
5 |
+
from scipy.ndimage import zoom
|
6 |
+
from network.generator import ResnetGenerator
|
7 |
+
import ants
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
# Class for handling MRI inference
|
14 |
+
class MRIInference:
|
15 |
+
def __init__(self, model, device, input_shape, output_shape):
|
16 |
+
self.model = model
|
17 |
+
self.device = device
|
18 |
+
self.input_shape = input_shape
|
19 |
+
self.output_shape = output_shape
|
20 |
+
|
21 |
+
def load_image(self, file_path):
|
22 |
+
# Load and preprocess the MRI image
|
23 |
+
image = nib.load(file_path).get_fdata()
|
24 |
+
rotated_image = np.rot90(image, k=1, axes=(1, 2))
|
25 |
+
mean = np.mean(rotated_image)
|
26 |
+
std = np.std(rotated_image)
|
27 |
+
normalized_image = (rotated_image - mean) / std
|
28 |
+
min_val = np.min(normalized_image)
|
29 |
+
max_val = np.max(normalized_image)
|
30 |
+
scale = 255 / (max_val - min_val)
|
31 |
+
normalized_image = scale * (normalized_image - min_val)
|
32 |
+
scale_factors = (
|
33 |
+
self.input_shape[0] / normalized_image.shape[0],
|
34 |
+
self.input_shape[1] / normalized_image.shape[1],
|
35 |
+
self.input_shape[2] / normalized_image.shape[2]
|
36 |
+
)
|
37 |
+
resampled_image = zoom(normalized_image, scale_factors, order=1)
|
38 |
+
return torch.tensor(
|
39 |
+
resampled_image[np.newaxis, np.newaxis, ...], dtype=torch.float32)
|
40 |
+
|
41 |
+
def save_image(self, image, file_name):
|
42 |
+
# Save the processed image
|
43 |
+
image = image.squeeze().cpu().numpy()
|
44 |
+
scale_factors = (
|
45 |
+
self.output_shape[0] / image.shape[0],
|
46 |
+
self.output_shape[1] / image.shape[1],
|
47 |
+
self.output_shape[2] / image.shape[2]
|
48 |
+
)
|
49 |
+
resampled_image = zoom(image, scale_factors, order=1)
|
50 |
+
resampled_image = np.rot90(resampled_image, k=-1, axes=(1, 2))
|
51 |
+
nib.save(nib.Nifti1Image(resampled_image, np.eye(4)), file_name)
|
52 |
+
|
53 |
+
def match_sform_affine(self, orig_path, gen_path):
|
54 |
+
# Match the affine of original and generated images
|
55 |
+
orig_img = nib.load(orig_path)
|
56 |
+
orig_affine = orig_img.affine
|
57 |
+
gen_img = nib.load(gen_path)
|
58 |
+
gen_data = gen_img.get_fdata()
|
59 |
+
matched_gen_img = nib.Nifti1Image(gen_data, orig_affine)
|
60 |
+
nib.save(matched_gen_img, gen_path)
|
61 |
+
|
62 |
+
def infer(self, input_tensor, original_file_path, output_path):
|
63 |
+
# Inference process
|
64 |
+
with torch.no_grad():
|
65 |
+
self.model.eval()
|
66 |
+
output = self.model(input_tensor.to(self.device))
|
67 |
+
scale_factor = (1, 1, self.output_shape[2] / output.shape[4])
|
68 |
+
resampled_output = zoom(
|
69 |
+
output.squeeze().cpu().numpy(), scale_factor, order=1)
|
70 |
+
generated_image = torch.tensor(resampled_output[np.newaxis, ...])
|
71 |
+
temp_orig_path = os.path.join(output_path, 'temp_orig.nii.gz')
|
72 |
+
resampled_file_path = resample_to_isotropic(
|
73 |
+
original_file_path, temp_orig_path)
|
74 |
+
temp_generated_path = os.path.join(output_path, 'temp_generated.nii.gz')
|
75 |
+
self.save_image(generated_image, temp_generated_path)
|
76 |
+
self.match_sform_affine(resampled_file_path, temp_generated_path)
|
77 |
+
resampled_generated_path = os.path.join(output_path, 'resampled_generated.nii.gz')
|
78 |
+
resample_to_isotropic(temp_generated_path, resampled_generated_path)
|
79 |
+
base_name = os.path.basename(original_file_path)
|
80 |
+
gen_file_name = base_name.replace(".nii", "_gen.nii")
|
81 |
+
warped_file_path = os.path.join(output_path, gen_file_name)
|
82 |
+
affine_registration(
|
83 |
+
resampled_file_path, resampled_generated_path, warped_file_path)
|
84 |
+
for temp_file in [temp_orig_path, temp_generated_path, resampled_generated_path]:
|
85 |
+
os.remove(temp_file)
|
86 |
+
return warped_file_path
|
87 |
+
|
88 |
+
# Functions for image processing and Streamlit UI handling
|
89 |
+
def resample_to_isotropic(image_path, output_path):
|
90 |
+
image = ants.image_read(image_path)
|
91 |
+
resampled_image = ants.resample_image(
|
92 |
+
image, (0.15, 0.15, 0.15), use_voxels=False, interp_type=4)
|
93 |
+
ants.image_write(resampled_image, output_path)
|
94 |
+
return output_path
|
95 |
+
|
96 |
+
|
97 |
+
def affine_registration(fixed_image_path, moving_image_path, output_path):
|
98 |
+
# Register affine of fixed and moving images
|
99 |
+
fixed_image = ants.image_read(fixed_image_path)
|
100 |
+
moving_image = ants.image_read(moving_image_path)
|
101 |
+
registration = ants.registration(
|
102 |
+
fixed=fixed_image, moving=moving_image,
|
103 |
+
type_of_transform='Elastic')
|
104 |
+
ants.image_write(registration['warpedmovout'], output_path)
|
105 |
+
|
106 |
+
@st.cache_data
|
107 |
+
def load_model():
|
108 |
+
# Load the trained model
|
109 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
110 |
+
generator = ResnetGenerator().to(device)
|
111 |
+
checkpoint_path = 'ckpt/ckpt_final/G_latest.pth'
|
112 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
113 |
+
generator.load_state_dict(checkpoint)
|
114 |
+
return generator, device
|
115 |
+
|
116 |
+
generator, device = load_model()
|
117 |
+
inference_engine = MRIInference(generator, device, (128, 32, 128), (128, 192, 128))
|
118 |
+
|
119 |
+
def save_middle_slice(image, file_path):
|
120 |
+
# Save middle slice of the MRI image
|
121 |
+
middle_slice = image[image.shape[0] // 2]
|
122 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
123 |
+
ax.imshow(middle_slice, cmap='gray', aspect='auto')
|
124 |
+
ax.axis('off')
|
125 |
+
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
126 |
+
plt.savefig(file_path, format='jpg', bbox_inches='tight', pad_inches=0, dpi=500)
|
127 |
+
plt.close()
|
128 |
+
|
129 |
+
def clear_output_folder(folder_path):
|
130 |
+
# Clear contents of the specified folder
|
131 |
+
for filename in os.listdir(folder_path):
|
132 |
+
file_path = os.path.join(folder_path, filename)
|
133 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
134 |
+
os.unlink(file_path)
|
135 |
+
elif os.path.isdir(file_path):
|
136 |
+
shutil.rmtree(file_path)
|
137 |
+
|
138 |
+
def clear_session():
|
139 |
+
# Clear the session state
|
140 |
+
for key in list(st.session_state.keys()):
|
141 |
+
del st.session_state[key]
|
142 |
+
|
143 |
+
def main():
|
144 |
+
# Sidebar - How to Use Guide
|
145 |
+
st.sidebar.title("How to Use EasySR")
|
146 |
+
st.sidebar.markdown(
|
147 |
+
"**Step-by-Step Guide:**\n\n"
|
148 |
+
"1. **Prepare Your Data**: \n\n\tGet your rat brain T2 MRI data. "
|
149 |
+
"Ensure it's in NIFTI format. Convert if necessary.\n\n"
|
150 |
+
"2. **Upload Your MRI**: \n\n\tDrag and drop your NIFTI file or use "
|
151 |
+
"the upload button.\n\n"
|
152 |
+
"3. **Start the EasySR**: \n\n\tPress 'EasySR' and we'll handle the rest. "
|
153 |
+
"The process is quick, typically taking just a few seconds to complete!\n\n"
|
154 |
+
"4. **Sit Back and Relax**: \n\n\tNo long waits here - your data will be "
|
155 |
+
"processed in under a minute.\n\n"
|
156 |
+
"5. **View and Download**: \n\n\tAfter processing, view the results and "
|
157 |
+
"use the download button to save the MRI.\n\n"
|
158 |
+
"6. **Use as Needed**: \n\n\tDownload and use your enhanced MRI as you see fit. "
|
159 |
+
"Get your data more!\n\n #"
|
160 |
+
"#\n\n "
|
161 |
+
"#\n\n\n "
|
162 |
+
"#\n\n\n "
|
163 |
+
"GitHub: EasySR"
|
164 |
+
"\n\n "
|
165 |
+
"[github.com/hwonheo/easysr](https://github.com/hwonheo/easysr)"
|
166 |
+
"\n\n "
|
167 |
+
"Huggingface (space): EasySR"
|
168 |
+
"\n\n "
|
169 |
+
"[huggingface.co/spaces/hwonheo/easysr]"
|
170 |
+
"(https://huggingface.co/spaces/hwonheo/easysr)"
|
171 |
+
)
|
172 |
+
|
173 |
+
# Main function for Streamlit UI
|
174 |
+
st.markdown("<h1 style='text-align: center;'>EasySR:</h1>", unsafe_allow_html=True)
|
175 |
+
st.markdown("<h2 style='text-align: center;'>Rat Brain T2 MRI SR-Reconstruction</h2>", unsafe_allow_html=True)
|
176 |
+
st.title("\n")
|
177 |
+
col1, col2 = st.columns([0.5, 0.5])
|
178 |
+
|
179 |
+
original_slice_path = None
|
180 |
+
inferred_slice_path = None
|
181 |
+
download_file_path = None
|
182 |
+
|
183 |
+
output_path = "infer/generate"
|
184 |
+
if not os.path.exists(output_path):
|
185 |
+
os.makedirs(output_path)
|
186 |
+
|
187 |
+
with col1:
|
188 |
+
st.markdown("<h3 style='text-align: center;'>MRI File Upload (NIFTI)</h3>",
|
189 |
+
unsafe_allow_html=True)
|
190 |
+
uploaded_file = st.file_uploader("", type=["nii", "nii.gz"], key='file_uploader')
|
191 |
+
|
192 |
+
if uploaded_file is not None:
|
193 |
+
st.session_state['uploaded_file'] = uploaded_file
|
194 |
+
file_name = uploaded_file.name
|
195 |
+
infer_button = st.button("EasySR (start inference)", type="primary")
|
196 |
+
|
197 |
+
if infer_button:
|
198 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".nii.gz") as tmp_file:
|
199 |
+
tmp_file.write(uploaded_file.getvalue())
|
200 |
+
file_path = tmp_file.name
|
201 |
+
|
202 |
+
try:
|
203 |
+
input_tensor = inference_engine.load_image(file_path)
|
204 |
+
warped_image_path = inference_engine.infer(
|
205 |
+
input_tensor, file_path, output_path)
|
206 |
+
|
207 |
+
gen_file_name = file_name.replace(".nii", "_gen.nii")
|
208 |
+
download_file_path = os.path.join(output_path, gen_file_name)
|
209 |
+
shutil.copy(warped_image_path, download_file_path)
|
210 |
+
|
211 |
+
original_img = nib.load(file_path).get_fdata()
|
212 |
+
inferred_img = nib.load(warped_image_path).get_fdata()
|
213 |
+
|
214 |
+
original_slice_path = os.path.join(output_path, "original_slice.jpg")
|
215 |
+
inferred_slice_path = os.path.join(output_path, "inferred_slice.jpg")
|
216 |
+
save_middle_slice(original_img, original_slice_path)
|
217 |
+
save_middle_slice(inferred_img, inferred_slice_path)
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
st.error(f"Error during inference: {e}")
|
221 |
+
|
222 |
+
if file_path and os.path.exists(file_path):
|
223 |
+
os.remove(file_path)
|
224 |
+
|
225 |
+
with col2:
|
226 |
+
st.header("\n")
|
227 |
+
st.header("\n")
|
228 |
+
st.header("\n")
|
229 |
+
st.header("\n")
|
230 |
+
st.header("\n")
|
231 |
+
st.header("\n")
|
232 |
+
st.header("\n")
|
233 |
+
st.subheader("\n")
|
234 |
+
if download_file_path and os.path.exists(download_file_path):
|
235 |
+
with open(download_file_path, "rb") as file:
|
236 |
+
st.download_button(
|
237 |
+
label="Download (EasySR inferred-MRI)",
|
238 |
+
data=file,
|
239 |
+
file_name=gen_file_name,
|
240 |
+
mime="application/gzip",
|
241 |
+
type="primary"
|
242 |
+
)
|
243 |
+
|
244 |
+
if st.button('Clear All',
|
245 |
+
help='Caution: Pressing the Clear All button will delete the contents of the generate folder.'):
|
246 |
+
clear_output_folder('infer/generate')
|
247 |
+
clear_session()
|
248 |
+
st.experimental_rerun()
|
249 |
+
|
250 |
+
st.subheader("\n")
|
251 |
+
st.subheader("\n")
|
252 |
+
st.subheader("\n")
|
253 |
+
if original_slice_path and os.path.exists(original_slice_path):
|
254 |
+
st.subheader("Comparison of Inferred slice")
|
255 |
+
col3, col4 = st.columns([0.5, 0.5])
|
256 |
+
with col3:
|
257 |
+
if original_slice_path and os.path.exists(original_slice_path):
|
258 |
+
st.markdown("**Original**")
|
259 |
+
st.image(original_slice_path, caption="Original MRI", width=300)
|
260 |
+
|
261 |
+
with col4:
|
262 |
+
if inferred_slice_path and os.path.exists(inferred_slice_path):
|
263 |
+
st.markdown("**EasySR**")
|
264 |
+
st.image(inferred_slice_path, caption="Inferred MRI", width=300)
|
265 |
+
|
266 |
+
if __name__ == '__main__':
|
267 |
+
main()
|
ckpt/ckpt_final/D_latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:364c07a84b3e8af7519aed34c7a66f56a0ee5d8faa0f8812ff9f20423058f417
|
3 |
+
size 2806810
|
ckpt/ckpt_final/G_latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b454e05aeef19abaed090814723266eb17ff18b4e2b6cde276c377173af8d577
|
3 |
+
size 285648
|
infer/generate/easysr_generated_data_will_be_here_in.txt
ADDED
File without changes
|
infer/input/input_your_infer_data_here.txt
ADDED
File without changes
|
network/discriminator.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
def conv_block(ndf, in_channels, out_channels, kernel_size, stride, padding):
|
5 |
+
"""Defines a convolutional block with convolution, batch normalization, and LeakyReLU activation."""
|
6 |
+
return nn.Sequential(
|
7 |
+
nn.Conv3d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
|
8 |
+
nn.BatchNorm3d(out_channels),
|
9 |
+
nn.LeakyReLU(0.2, inplace=True)
|
10 |
+
)
|
11 |
+
|
12 |
+
class PatchDiscriminator(nn.Module):
|
13 |
+
def __init__(self, input_nc=1, ndf=16):
|
14 |
+
"""Initializes the Patch Discriminator model.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
input_nc (int): Number of input channels. Default is 1 (e.g., for grayscale images).
|
18 |
+
ndf (int): Number of filters in the first convolution layer. Default is 16.
|
19 |
+
"""
|
20 |
+
super(PatchDiscriminator, self).__init__()
|
21 |
+
|
22 |
+
# Define convolutional blocks
|
23 |
+
self.conv1 = conv_block(ndf, input_nc, ndf, kernel_size=4, stride=2, padding=1)
|
24 |
+
self.conv2 = conv_block(ndf, ndf, ndf * 2, kernel_size=4, stride=2, padding=1)
|
25 |
+
self.conv3 = conv_block(ndf * 2, ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1)
|
26 |
+
self.conv4 = conv_block(ndf * 4, ndf * 4, ndf * 8, kernel_size=4, stride=2, padding=1)
|
27 |
+
|
28 |
+
# Final convolution layer to reduce to a single channel output
|
29 |
+
self.conv5 = nn.Conv3d(ndf * 8, 1, kernel_size=4, padding=1)
|
30 |
+
|
31 |
+
# Flatten layer
|
32 |
+
self.flatten = nn.Flatten()
|
33 |
+
|
34 |
+
# Fully connected layer to adjust output size
|
35 |
+
self.fc = nn.Linear(539, 1) # Adjust '539' based on the flattened output size
|
36 |
+
|
37 |
+
# Sigmoid activation to obtain a probability
|
38 |
+
self.sigmoid = nn.Sigmoid()
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
"""Defines the forward pass of the discriminator."""
|
42 |
+
x = self.conv1(x)
|
43 |
+
x = self.conv2(x)
|
44 |
+
x = self.conv3(x)
|
45 |
+
x = self.conv4(x)
|
46 |
+
x = self.conv5(x)
|
47 |
+
x = self.flatten(x)
|
48 |
+
x = self.fc(x)
|
49 |
+
x = self.sigmoid(x)
|
50 |
+
return x
|
51 |
+
|
network/generator.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
# Resnet Block
|
5 |
+
class ResnetBlock(nn.Module):
|
6 |
+
def __init__(self, inf, onf):
|
7 |
+
super(ResnetBlock, self).__init__()
|
8 |
+
self.conv_block = self.build_conv_block(inf, onf)
|
9 |
+
|
10 |
+
def build_conv_block(self, inf, onf):
|
11 |
+
conv_block = [
|
12 |
+
nn.Conv3d(inf, onf, kernel_size=3, stride=1, padding=1),
|
13 |
+
nn.BatchNorm3d(onf),
|
14 |
+
nn.LeakyReLU(0.2)
|
15 |
+
]
|
16 |
+
conv_block += [
|
17 |
+
nn.Conv3d(onf, onf, kernel_size=3, stride=1, padding=1),
|
18 |
+
nn.BatchNorm3d(onf)
|
19 |
+
]
|
20 |
+
return nn.Sequential(*conv_block)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
out = x + self.conv_block(x)
|
24 |
+
return out
|
25 |
+
|
26 |
+
# DeUpBlock for upsampling in the width dimension
|
27 |
+
class DeUpBlock(nn.Module):
|
28 |
+
def __init__(self, inf, onf):
|
29 |
+
super(DeUpBlock, self).__init__()
|
30 |
+
# Upsampling only in the width dimension
|
31 |
+
self.deupblock = nn.Sequential(
|
32 |
+
nn.ConvTranspose3d(inf, onf, kernel_size=(1, 6, 1), stride=(1, 6, 1), padding=(0, 0, 0)),
|
33 |
+
nn.LeakyReLU(0.2)
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return self.deupblock(x)
|
38 |
+
|
39 |
+
# Resnet Generator
|
40 |
+
class ResnetGenerator(nn.Module):
|
41 |
+
def __init__(self, input_nc=1, output_nc=1, ngf=16, n_residual_blocks=4):
|
42 |
+
super(ResnetGenerator, self).__init__()
|
43 |
+
self.n_residual_blocks = n_residual_blocks
|
44 |
+
|
45 |
+
self.conv_block1 = nn.Sequential(
|
46 |
+
nn.Conv3d(input_nc, ngf, kernel_size=3, padding=1),
|
47 |
+
nn.LeakyReLU(0.2)
|
48 |
+
)
|
49 |
+
|
50 |
+
for i in range(n_residual_blocks):
|
51 |
+
self.add_module(f'residual_block{i+1}', ResnetBlock(ngf, ngf))
|
52 |
+
|
53 |
+
self.conv_block2 = nn.Sequential(
|
54 |
+
nn.Conv3d(ngf, ngf, kernel_size=3, padding=1),
|
55 |
+
nn.BatchNorm3d(ngf)
|
56 |
+
)
|
57 |
+
|
58 |
+
self.deup = DeUpBlock(ngf, ngf)
|
59 |
+
self.conv3 = nn.Conv3d(ngf, output_nc, kernel_size=3, padding=1)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.conv_block1(x)
|
63 |
+
y = x.clone()
|
64 |
+
for i in range(self.n_residual_blocks):
|
65 |
+
y = self.__getattr__(f'residual_block{i+1}')(y)
|
66 |
+
x = self.conv_block2(y) + x
|
67 |
+
x = self.deup(x)
|
68 |
+
return self.conv3(x)
|
69 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nibabel
|
2 |
+
numpy
|
3 |
+
tqdm
|
4 |
+
scipy
|
5 |
+
matplotlib
|
6 |
+
SimpleITK
|
7 |
+
torchio
|
8 |
+
antspyx
|
9 |
+
streamlit
|