Upload app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,34 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import torch
|
5 |
-
from scipy.ndimage import zoom
|
6 |
-
from network.generator import ResnetGenerator
|
7 |
import time
|
8 |
from pathlib import Path
|
|
|
9 |
import ants
|
10 |
-
import tempfile
|
11 |
-
import os
|
12 |
import matplotlib.pyplot as plt
|
13 |
-
import
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Class
|
17 |
class MRIInference:
|
18 |
def __init__(self, model, device, input_shape, output_shape):
|
|
|
19 |
self.model = model
|
20 |
self.device = device
|
21 |
self.input_shape = input_shape
|
22 |
self.output_shape = output_shape
|
23 |
|
24 |
def load_image(self, file_path):
|
25 |
-
# Load and preprocess
|
26 |
image = nib.load(file_path).get_fdata()
|
27 |
rotated_image = np.rot90(image, k=1, axes=(1, 2))
|
28 |
-
mean = np.mean(rotated_image)
|
29 |
-
std = np.std(rotated_image)
|
30 |
normalized_image = (rotated_image - mean) / std
|
31 |
-
min_val = np.min(normalized_image)
|
32 |
-
max_val = np.max(normalized_image)
|
33 |
scale = 255 / (max_val - min_val)
|
34 |
normalized_image = scale * (normalized_image - min_val)
|
35 |
scale_factors = (
|
@@ -42,7 +41,7 @@ class MRIInference:
|
|
42 |
resampled_image[np.newaxis, np.newaxis, ...], dtype=torch.float32)
|
43 |
|
44 |
def save_image(self, image, file_name):
|
45 |
-
# Save
|
46 |
image = image.squeeze().cpu().numpy()
|
47 |
scale_factors = (
|
48 |
self.output_shape[0] / image.shape[0],
|
@@ -52,9 +51,9 @@ class MRIInference:
|
|
52 |
resampled_image = zoom(image, scale_factors, order=1)
|
53 |
resampled_image = np.rot90(resampled_image, k=-1, axes=(1, 2))
|
54 |
nib.save(nib.Nifti1Image(resampled_image, np.eye(4)), file_name)
|
55 |
-
|
56 |
def match_sform_affine(self, orig_path, gen_path):
|
57 |
-
# Match
|
58 |
orig_img = nib.load(orig_path)
|
59 |
orig_affine = orig_img.affine
|
60 |
gen_img = nib.load(gen_path)
|
@@ -63,7 +62,7 @@ class MRIInference:
|
|
63 |
nib.save(matched_gen_img, gen_path)
|
64 |
|
65 |
def infer(self, input_tensor, original_file_path, output_path):
|
66 |
-
#
|
67 |
with torch.no_grad():
|
68 |
self.model.eval()
|
69 |
output = self.model(input_tensor.to(self.device))
|
@@ -87,18 +86,42 @@ class MRIInference:
|
|
87 |
for temp_file in [temp_orig_path, temp_generated_path, resampled_generated_path]:
|
88 |
os.remove(temp_file)
|
89 |
return warped_file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def resample_to_isotropic(image_path, output_path):
|
|
|
93 |
image = ants.image_read(image_path)
|
94 |
resampled_image = ants.resample_image(
|
95 |
image, (0.15, 0.15, 0.15), use_voxels=False, interp_type=4)
|
96 |
ants.image_write(resampled_image, output_path)
|
97 |
return output_path
|
98 |
|
99 |
-
|
100 |
def affine_registration(fixed_image_path, moving_image_path, output_path):
|
101 |
-
#
|
102 |
fixed_image = ants.image_read(fixed_image_path)
|
103 |
moving_image = ants.image_read(moving_image_path)
|
104 |
registration = ants.registration(
|
@@ -108,7 +131,7 @@ def affine_registration(fixed_image_path, moving_image_path, output_path):
|
|
108 |
|
109 |
@st.cache_data
|
110 |
def load_model():
|
111 |
-
# Load
|
112 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
113 |
generator = ResnetGenerator().to(device)
|
114 |
checkpoint_path = 'ckpt/ckpt_final/G_latest.pth'
|
@@ -116,11 +139,12 @@ def load_model():
|
|
116 |
generator.load_state_dict(checkpoint)
|
117 |
return generator, device
|
118 |
|
|
|
119 |
generator, device = load_model()
|
120 |
inference_engine = MRIInference(generator, device, (128, 32, 128), (128, 192, 128))
|
121 |
|
122 |
def save_middle_slice(image, file_path):
|
123 |
-
# Save middle slice of the MRI image
|
124 |
middle_slice = image[image.shape[0] // 2]
|
125 |
fig, ax = plt.subplots(figsize=(5, 5))
|
126 |
ax.imshow(middle_slice, cmap='gray', aspect='auto')
|
@@ -130,7 +154,7 @@ def save_middle_slice(image, file_path):
|
|
130 |
plt.close()
|
131 |
|
132 |
def clear_output_folder(folder_path):
|
133 |
-
# Clear contents of
|
134 |
for filename in os.listdir(folder_path):
|
135 |
file_path = os.path.join(folder_path, filename)
|
136 |
if os.path.isfile(file_path) or os.path.islink(file_path):
|
@@ -139,46 +163,38 @@ def clear_output_folder(folder_path):
|
|
139 |
shutil.rmtree(file_path)
|
140 |
|
141 |
def clear_session():
|
142 |
-
# Clear
|
143 |
for key in list(st.session_state.keys()):
|
144 |
del st.session_state[key]
|
145 |
|
|
|
146 |
def main():
|
147 |
-
|
|
|
|
|
148 |
st.sidebar.subheader("_How to Use EasySR_", divider='red')
|
149 |
-
|
150 |
st.sidebar.markdown(
|
151 |
"**Step-by-Step Guide:**\n\n"
|
152 |
-
"1. **Prepare Your Data**:
|
153 |
-
"
|
154 |
-
"2. **Upload Your MRI**:
|
155 |
-
"the upload button.\n\n"
|
156 |
-
"3. **Start the EasySR**:
|
157 |
-
"
|
158 |
-
"4. **Sit Back and Relax**:
|
159 |
-
"
|
160 |
-
"
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"#\n\n\n "
|
166 |
-
"#\n\n\n "
|
167 |
-
"GitHub: EasySR"
|
168 |
-
"\n\n "
|
169 |
-
"[github.com/hwonheo/easysr](https://github.com/hwonheo/easysr)"
|
170 |
-
"\n\n "
|
171 |
-
"Huggingface (space): EasySR"
|
172 |
-
"\n\n "
|
173 |
-
"[huggingface.co/spaces/hwonheo/easysr]"
|
174 |
-
"(https://huggingface.co/spaces/hwonheo/easysr)"
|
175 |
)
|
176 |
|
177 |
-
# Main
|
178 |
st.markdown("<h1 style='text-align: center;'>EasySR</h1>", unsafe_allow_html=True)
|
179 |
-
st.subheader("_Easy
|
180 |
-
|
181 |
|
|
|
182 |
original_slice_path = None
|
183 |
inferred_slice_path = None
|
184 |
download_file_path = None
|
@@ -187,76 +203,93 @@ def main():
|
|
187 |
if not os.path.exists(output_path):
|
188 |
os.makedirs(output_path)
|
189 |
|
190 |
-
|
191 |
uploaded_file = st.file_uploader("_MRI File Upload (NIFTI)_",
|
192 |
-
|
193 |
|
194 |
if uploaded_file is not None:
|
|
|
195 |
st.session_state['uploaded_file'] = uploaded_file
|
196 |
file_name = uploaded_file.name
|
|
|
|
|
197 |
infer_button = st.button("EasySR (start inference)", type="primary")
|
198 |
|
199 |
if infer_button:
|
|
|
200 |
temp_dir = tempfile.gettempdir()
|
201 |
temp_file_path = os.path.join(temp_dir, file_name)
|
202 |
|
|
|
203 |
with open(temp_file_path, "wb") as tmp_file:
|
204 |
tmp_file.write(uploaded_file.getvalue())
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
if original_slice_path and os.path.exists(original_slice_path):
|
249 |
-
st.subheader("Comparison of Inferred slice")
|
250 |
-
col1, col2 = st.columns([0.5, 0.5])
|
251 |
-
with col1:
|
252 |
-
if original_slice_path and os.path.exists(original_slice_path):
|
253 |
st.markdown("**Original**")
|
254 |
st.image(original_slice_path, caption="Original MRI", width=300)
|
255 |
-
|
256 |
-
with col2:
|
257 |
-
if inferred_slice_path and os.path.exists(inferred_slice_path):
|
258 |
st.markdown("**EasySR**")
|
259 |
st.image(inferred_slice_path, caption="Inferred MRI", width=300)
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
if __name__ == '__main__':
|
262 |
-
main()
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import threading
|
|
|
|
|
|
|
4 |
import time
|
5 |
from pathlib import Path
|
6 |
+
import shutil
|
7 |
import ants
|
|
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import nibabel as nib
|
10 |
+
import numpy as np
|
11 |
+
import streamlit as st
|
12 |
+
import torch
|
13 |
+
from network.generator import ResnetGenerator
|
14 |
+
from scipy.ndimage import zoom
|
15 |
|
16 |
+
# Class to handle MRI image inference
|
17 |
class MRIInference:
|
18 |
def __init__(self, model, device, input_shape, output_shape):
|
19 |
+
# Initialize with model, device, and shapes
|
20 |
self.model = model
|
21 |
self.device = device
|
22 |
self.input_shape = input_shape
|
23 |
self.output_shape = output_shape
|
24 |
|
25 |
def load_image(self, file_path):
|
26 |
+
# Load and preprocess MRI image
|
27 |
image = nib.load(file_path).get_fdata()
|
28 |
rotated_image = np.rot90(image, k=1, axes=(1, 2))
|
29 |
+
mean, std = np.mean(rotated_image), np.std(rotated_image)
|
|
|
30 |
normalized_image = (rotated_image - mean) / std
|
31 |
+
min_val, max_val = np.min(normalized_image), np.max(normalized_image)
|
|
|
32 |
scale = 255 / (max_val - min_val)
|
33 |
normalized_image = scale * (normalized_image - min_val)
|
34 |
scale_factors = (
|
|
|
41 |
resampled_image[np.newaxis, np.newaxis, ...], dtype=torch.float32)
|
42 |
|
43 |
def save_image(self, image, file_name):
|
44 |
+
# Save processed image to file
|
45 |
image = image.squeeze().cpu().numpy()
|
46 |
scale_factors = (
|
47 |
self.output_shape[0] / image.shape[0],
|
|
|
51 |
resampled_image = zoom(image, scale_factors, order=1)
|
52 |
resampled_image = np.rot90(resampled_image, k=-1, axes=(1, 2))
|
53 |
nib.save(nib.Nifti1Image(resampled_image, np.eye(4)), file_name)
|
54 |
+
|
55 |
def match_sform_affine(self, orig_path, gen_path):
|
56 |
+
# Match affine transformation of original and generated images
|
57 |
orig_img = nib.load(orig_path)
|
58 |
orig_affine = orig_img.affine
|
59 |
gen_img = nib.load(gen_path)
|
|
|
62 |
nib.save(matched_gen_img, gen_path)
|
63 |
|
64 |
def infer(self, input_tensor, original_file_path, output_path):
|
65 |
+
# Perform inference on input tensor
|
66 |
with torch.no_grad():
|
67 |
self.model.eval()
|
68 |
output = self.model(input_tensor.to(self.device))
|
|
|
86 |
for temp_file in [temp_orig_path, temp_generated_path, resampled_generated_path]:
|
87 |
os.remove(temp_file)
|
88 |
return warped_file_path
|
89 |
+
|
90 |
+
# Perform inference and handle images
|
91 |
+
def run_inference(input_tensor, temp_file_path, output_path):
|
92 |
+
try:
|
93 |
+
warped_image_path = inference_engine.infer(
|
94 |
+
input_tensor, temp_file_path, output_path)
|
95 |
+
|
96 |
+
gen_file_name = temp_file_path.replace(".nii", "_gen.nii")
|
97 |
+
download_file_path = os.path.join(output_path, gen_file_name)
|
98 |
+
shutil.copy(warped_image_path, download_file_path)
|
99 |
+
|
100 |
+
original_img = nib.load(temp_file_path).get_fdata()
|
101 |
+
inferred_img = nib.load(warped_image_path).get_fdata()
|
102 |
+
|
103 |
+
original_slice_path = os.path.join(output_path, "original_slice.jpg")
|
104 |
+
inferred_slice_path = os.path.join(output_path, "inferred_slice.jpg")
|
105 |
+
save_middle_slice(original_img, original_slice_path)
|
106 |
+
save_middle_slice(inferred_img, inferred_slice_path)
|
107 |
|
108 |
+
return (original_slice_path, inferred_slice_path,
|
109 |
+
download_file_path, gen_file_name)
|
110 |
+
except Exception as e:
|
111 |
+
st.error(f"Error during inference: {e}")
|
112 |
+
return None, None, None, None
|
113 |
+
|
114 |
+
# Image processing functions
|
115 |
def resample_to_isotropic(image_path, output_path):
|
116 |
+
# Resample image to isotropic resolution
|
117 |
image = ants.image_read(image_path)
|
118 |
resampled_image = ants.resample_image(
|
119 |
image, (0.15, 0.15, 0.15), use_voxels=False, interp_type=4)
|
120 |
ants.image_write(resampled_image, output_path)
|
121 |
return output_path
|
122 |
|
|
|
123 |
def affine_registration(fixed_image_path, moving_image_path, output_path):
|
124 |
+
# Perform affine registration between two images
|
125 |
fixed_image = ants.image_read(fixed_image_path)
|
126 |
moving_image = ants.image_read(moving_image_path)
|
127 |
registration = ants.registration(
|
|
|
131 |
|
132 |
@st.cache_data
|
133 |
def load_model():
|
134 |
+
# Load pre-trained model
|
135 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
136 |
generator = ResnetGenerator().to(device)
|
137 |
checkpoint_path = 'ckpt/ckpt_final/G_latest.pth'
|
|
|
139 |
generator.load_state_dict(checkpoint)
|
140 |
return generator, device
|
141 |
|
142 |
+
# Initialize model and inference engine
|
143 |
generator, device = load_model()
|
144 |
inference_engine = MRIInference(generator, device, (128, 32, 128), (128, 192, 128))
|
145 |
|
146 |
def save_middle_slice(image, file_path):
|
147 |
+
# Save the middle slice of the MRI image
|
148 |
middle_slice = image[image.shape[0] // 2]
|
149 |
fig, ax = plt.subplots(figsize=(5, 5))
|
150 |
ax.imshow(middle_slice, cmap='gray', aspect='auto')
|
|
|
154 |
plt.close()
|
155 |
|
156 |
def clear_output_folder(folder_path):
|
157 |
+
# Clear contents of a specified folder
|
158 |
for filename in os.listdir(folder_path):
|
159 |
file_path = os.path.join(folder_path, filename)
|
160 |
if os.path.isfile(file_path) or os.path.islink(file_path):
|
|
|
163 |
shutil.rmtree(file_path)
|
164 |
|
165 |
def clear_session():
|
166 |
+
# Clear Streamlit session state
|
167 |
for key in list(st.session_state.keys()):
|
168 |
del st.session_state[key]
|
169 |
|
170 |
+
# Main function for Streamlit UI
|
171 |
def main():
|
172 |
+
global original_slice_path, inferred_slice_path, download_file_path, gen_file_name
|
173 |
+
|
174 |
+
# Setup sidebar with instructions
|
175 |
st.sidebar.subheader("_How to Use EasySR_", divider='red')
|
|
|
176 |
st.sidebar.markdown(
|
177 |
"**Step-by-Step Guide:**\n\n"
|
178 |
+
"1. **Prepare Your Data**: Make sure your rat brain MRI data "
|
179 |
+
"is in NIFTI format. Convert if needed.\n\n"
|
180 |
+
"2. **Upload Your MRI**: Drag and drop your NIFTI file "
|
181 |
+
"or use the upload button.\n\n"
|
182 |
+
"3. **Start the EasySR**: Click 'EasySR' to begin processing. "
|
183 |
+
"It usually takes a few minutes.\n\n"
|
184 |
+
"4. **Sit Back and Relax**: Wait while your data is processed quickly.\n\n"
|
185 |
+
"5. **View and Download**: After processing, view the results and "
|
186 |
+
"use the download button to save the enhanced MRI data.\n\n"
|
187 |
+
"6. **Use as Needed**: Download and utilize your enhanced MRI. "
|
188 |
+
"Continue using EasySR for more enhancements.\n\n"
|
189 |
+
":rocket: :red[*EasySR*] \t [Github](https://github.com/hwonheo/easysr)\n\n"
|
190 |
+
":hugging_face: :orange[*EasySR*] \t [Huggingface](https://huggingface.co/spaces/hwonheo/easysr)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
|
193 |
+
# Main interface layout
|
194 |
st.markdown("<h1 style='text-align: center;'>EasySR</h1>", unsafe_allow_html=True)
|
195 |
+
st.subheader("_Easy Web UI for Generative 3D Inference of Rat Brain MRI_", divider='red')
|
|
|
196 |
|
197 |
+
# Initialize paths for processing results
|
198 |
original_slice_path = None
|
199 |
inferred_slice_path = None
|
200 |
download_file_path = None
|
|
|
203 |
if not os.path.exists(output_path):
|
204 |
os.makedirs(output_path)
|
205 |
|
206 |
+
# File uploader for MRI files
|
207 |
uploaded_file = st.file_uploader("_MRI File Upload (NIFTI)_",
|
208 |
+
type=["nii", "nii.gz"], key='file_uploader')
|
209 |
|
210 |
if uploaded_file is not None:
|
211 |
+
# Store uploaded file in session state
|
212 |
st.session_state['uploaded_file'] = uploaded_file
|
213 |
file_name = uploaded_file.name
|
214 |
+
|
215 |
+
# Inference start button
|
216 |
infer_button = st.button("EasySR (start inference)", type="primary")
|
217 |
|
218 |
if infer_button:
|
219 |
+
# Temporary directory for file processing
|
220 |
temp_dir = tempfile.gettempdir()
|
221 |
temp_file_path = os.path.join(temp_dir, file_name)
|
222 |
|
223 |
+
# Write uploaded file to temp directory
|
224 |
with open(temp_file_path, "wb") as tmp_file:
|
225 |
tmp_file.write(uploaded_file.getvalue())
|
226 |
|
227 |
+
# Load image and start inference in a thread
|
228 |
+
input_tensor = inference_engine.load_image(temp_file_path)
|
229 |
+
|
230 |
+
def inference_wrapper():
|
231 |
+
# Running inference and processing results
|
232 |
+
global original_slice_path, inferred_slice_path, download_file_path, gen_file_name
|
233 |
+
try:
|
234 |
+
warped_image_path = inference_engine.infer(
|
235 |
+
input_tensor, temp_file_path, output_path)
|
236 |
+
gen_file_name = file_name.replace(".nii", "_gen.nii")
|
237 |
+
download_file_path = os.path.join(output_path, gen_file_name)
|
238 |
+
shutil.copy(warped_image_path, download_file_path)
|
239 |
+
|
240 |
+
# Load original and inferred images for display
|
241 |
+
original_img = nib.load(temp_file_path).get_fdata()
|
242 |
+
inferred_img = nib.load(warped_image_path).get_fdata()
|
243 |
+
original_slice_path = os.path.join(output_path, "original_slice.jpg")
|
244 |
+
inferred_slice_path = os.path.join(output_path, "inferred_slice.jpg")
|
245 |
+
|
246 |
+
# Save middle slice of both images for comparison
|
247 |
+
save_middle_slice(original_img, original_slice_path)
|
248 |
+
save_middle_slice(inferred_img, inferred_slice_path)
|
249 |
+
except Exception as e:
|
250 |
+
st.error(f"Error during inference: {e}")
|
251 |
+
finally:
|
252 |
+
if temp_file_path and os.path.exists(temp_file_path):
|
253 |
+
os.remove(temp_file_path)
|
254 |
+
|
255 |
+
# Start thread for inference
|
256 |
+
inference_thread = threading.Thread(target=inference_wrapper)
|
257 |
+
inference_thread.start()
|
258 |
+
|
259 |
+
# Display spinner while processing
|
260 |
+
with st.spinner("Processing your MRI image..."):
|
261 |
+
inference_thread.join()
|
262 |
+
|
263 |
+
# Display comparison images and download button after processing
|
264 |
+
if original_slice_path and os.path.exists(original_slice_path) \
|
265 |
+
and inferred_slice_path and os.path.exists(inferred_slice_path):
|
266 |
+
st.subheader("Comparison of Original and EasySR Inferred Slice")
|
267 |
+
col1, col2 = st.columns([0.5, 0.5])
|
268 |
+
with col1:
|
|
|
|
|
|
|
|
|
|
|
269 |
st.markdown("**Original**")
|
270 |
st.image(original_slice_path, caption="Original MRI", width=300)
|
271 |
+
with col2:
|
|
|
|
|
272 |
st.markdown("**EasySR**")
|
273 |
st.image(inferred_slice_path, caption="Inferred MRI", width=300)
|
274 |
|
275 |
+
if download_file_path and os.path.exists(download_file_path):
|
276 |
+
with open(download_file_path, "rb") as file:
|
277 |
+
st.download_button(
|
278 |
+
label="Download (EasySR Inferred-MRI)",
|
279 |
+
data=file,
|
280 |
+
file_name=gen_file_name,
|
281 |
+
mime="application/gzip",
|
282 |
+
type="primary"
|
283 |
+
)
|
284 |
+
|
285 |
+
# Button to clear generated content
|
286 |
+
if st.button('Clear Generated All',
|
287 |
+
help='Pressing this will delete the contents of the generate folder.'):
|
288 |
+
clear_output_folder('infer/generate')
|
289 |
+
clear_session()
|
290 |
+
st.rerun()
|
291 |
+
|
292 |
+
# Entry point for the Streamlit application
|
293 |
if __name__ == '__main__':
|
294 |
+
main()
|
295 |
+
|