from typing import Optional, Tuple from einops import rearrange import requests import torch import torch.nn.functional as F import timm from PIL import Image from torch import nn import numpy as np import os import time import gradio as gr from functools import partial MODEL_DICT = {} LAYER_DICT = {} RES_DICT = {} class SAM2(nn.Module): def __init__(self, model_cfg='sam2_hiera_b+',): super().__init__() try: from sam2.build_sam import build_sam2 except ImportError: print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git") return config_dict = { 'sam2_hiera_l': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"), 'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"), 'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"), 'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"), } filename, url = config_dict[model_cfg] if not os.path.exists(filename): print(f"Downloading {url}") r = requests.get(url) with open(filename, 'wb') as f: f.write(r.content) sam2_checkpoint = filename device = 'cuda' if torch.cuda.is_available() else 'cpu' sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device) image_encoder = sam2_model.image_encoder image_encoder.eval() from sam2.modeling.backbones.hieradet import do_pool from sam2.modeling.backbones.utils import window_partition, window_unpartition def new_forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # B, H, W, C x = self.norm1(x) # Skip connection if self.dim != self.dim_out: shortcut = do_pool(self.proj(x), self.pool) # Window partition window_size = self.window_size if window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, window_size) # Window Attention + Q Pooling (if stage change) x = self.attn(x) if self.q_stride: # Shapes have changed due to Q pooling window_size = self.window_size // self.q_stride[0] H, W = shortcut.shape[1:3] pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size pad_hw = (H + pad_h, W + pad_w) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, window_size, pad_hw, (H, W)) self.attn_output = x.clone() x = shortcut + self.drop_path(x) # MLP mlp_out = self.mlp(self.norm2(x)) self.mlp_output = mlp_out.clone() x = x + self.drop_path(mlp_out) self.block_output = x.clone() return x setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward) self.image_encoder = image_encoder @torch.no_grad() def forward(self, x: torch.Tensor) -> torch.Tensor: output = self.image_encoder(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for block in self.image_encoder.trunk.blocks: attn_outputs.append(block.attn_output) mlp_outputs.append(block.mlp_output) block_outputs.append(block.block_output) return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["SAM2(sam2_hiera_t)"] = partial(SAM2, model_cfg='sam2_hiera_t') LAYER_DICT["SAM2(sam2_hiera_t)"] = 12 RES_DICT["SAM2(sam2_hiera_t)"] = (1024, 1024) MODEL_DICT["SAM2(sam2_hiera_s)"] = partial(SAM2, model_cfg='sam2_hiera_s') LAYER_DICT["SAM2(sam2_hiera_s)"] = 16 RES_DICT["SAM2(sam2_hiera_s)"] = (1024, 1024) MODEL_DICT["SAM2(sam2_hiera_b+)"] = partial(SAM2, model_cfg='sam2_hiera_b+') LAYER_DICT["SAM2(sam2_hiera_b+)"] = 24 RES_DICT["SAM2(sam2_hiera_b+)"] = (1024, 1024) MODEL_DICT["SAM2(sam2_hiera_l)"] = partial(SAM2, model_cfg='sam2_hiera_l') LAYER_DICT["SAM2(sam2_hiera_l)"] = 48 RES_DICT["SAM2(sam2_hiera_l)"] = (1024, 1024) class SAM(torch.nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) from segment_anything import sam_model_registry, SamPredictor from segment_anything.modeling.sam import Sam checkpoint = "sam_vit_b_01ec64.pth" if not os.path.exists(checkpoint): checkpoint_url = ( "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" ) import requests r = requests.get(checkpoint_url) with open(checkpoint, "wb") as f: f.write(r.content) sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint) from segment_anything.modeling.image_encoder import ( window_partition, window_unpartition, ) def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) self.attn_output = x.clone() x = shortcut + x mlp_outout = self.mlp(self.norm2(x)) self.mlp_output = mlp_outout.clone() x = x + mlp_outout self.block_output = x.clone() return x setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward) self.image_encoder = sam.image_encoder self.image_encoder.eval() @torch.no_grad() def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.no_grad(): x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") out = self.image_encoder(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i, blk in enumerate(self.image_encoder.blocks): attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) attn_outputs = torch.stack(attn_outputs) mlp_outputs = torch.stack(mlp_outputs) block_outputs = torch.stack(block_outputs) return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["SAM(sam_vit_b)"] = partial(SAM) LAYER_DICT["SAM(sam_vit_b)"] = 12 RES_DICT["SAM(sam_vit_b)"] = (1024, 1024) class MobileSAM(nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) from mobile_sam import sam_model_registry url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt" model_type = "vit_t" sam_checkpoint = "mobile_sam.pt" if not os.path.exists(sam_checkpoint): import requests r = requests.get(url) with open(sam_checkpoint, "wb") as f: f.write(r.content) mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) def new_forward_fn(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) self.attn_output = rearrange(x.clone(), "b c h w -> b h w c") x = self.conv3(x) self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c") x = self.drop_path(x) x += shortcut x = self.act3(x) self.block_output = rearrange(x.clone(), "b c h w -> b h w c") return x setattr( mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn, ) def new_forward_fn2(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" res_x = x if H == self.window_size and W == self.window_size: x = self.attn(x) else: x = x.view(B, H, W, C) pad_b = (self.window_size - H % self.window_size) % self.window_size pad_r = (self.window_size - W % self.window_size) % self.window_size padding = pad_b > 0 or pad_r > 0 if padding: x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) pH, pW = H + pad_b, W + pad_r nH = pH // self.window_size nW = pW // self.window_size # window partition x = ( x.view(B, nH, self.window_size, nW, self.window_size, C) .transpose(2, 3) .reshape(B * nH * nW, self.window_size * self.window_size, C) ) x = self.attn(x) # window reverse x = ( x.view(B, nH, nW, self.window_size, self.window_size, C) .transpose(2, 3) .reshape(B, pH, pW, C) ) if padding: x = x[:, :H, :W].contiguous() x = x.view(B, L, C) hw = np.sqrt(x.shape[1]).astype(int) self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) x = res_x + self.drop_path(x) x = x.transpose(1, 2).reshape(B, C, H, W) x = self.local_conv(x) x = x.view(B, C, L).transpose(1, 2) mlp_output = self.mlp(x) self.mlp_output = rearrange( mlp_output.clone(), "b (h w) c -> b h w c", h=hw ) x = x + self.drop_path(mlp_output) self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) return x setattr( mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2, ) mobile_sam.eval() self.image_encoder = mobile_sam.image_encoder @torch.no_grad() def forward(self, x): with torch.no_grad(): x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") out = self.image_encoder(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i_layer in range(len(self.image_encoder.layers)): for i_block in range(len(self.image_encoder.layers[i_layer].blocks)): blk = self.image_encoder.layers[i_layer].blocks[i_block] attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["MobileSAM"] = partial(MobileSAM) LAYER_DICT["MobileSAM"] = 12 RES_DICT["MobileSAM"] = (1024, 1024) class DiNOv2(torch.nn.Module): def __init__(self, ver="dinov2_vitb14_reg", num_reg=5): super().__init__() self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver) self.dinov2.requires_grad_(False) self.dinov2.eval() self.num_reg = num_reg def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: def attn_residual_func(x): return self.ls1(self.attn(self.norm1(x))) def ffn_residual_func(x): return self.ls2(self.mlp(self.norm2(x))) attn_output = attn_residual_func(x) hw = np.sqrt(attn_output.shape[1] - num_reg).astype(int) self.attn_output = rearrange( attn_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw ) x = x + attn_output mlp_output = ffn_residual_func(x) self.mlp_output = rearrange( mlp_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw ) x = x + mlp_output block_output = x self.block_output = rearrange( block_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw ) return x setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward) @torch.no_grad() def forward(self, x): out = self.dinov2(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i, blk in enumerate(self.dinov2.blocks): attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) attn_outputs = torch.stack(attn_outputs) mlp_outputs = torch.stack(mlp_outputs) block_outputs = torch.stack(block_outputs) return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = partial(DiNOv2, ver="dinov2_vitb14_reg", num_reg=5) LAYER_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = 12 RES_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = (672, 672) MODEL_DICT["DiNOv2(dinov2_vitb14)"] = partial(DiNOv2, ver="dinov2_vitb14", num_reg=1) LAYER_DICT["DiNOv2(dinov2_vitb14)"] = 12 RES_DICT["DiNOv2(dinov2_vitb14)"] = (672, 672) class DiNO(nn.Module): def __init__(self, ver="dino_vitb8"): super().__init__() model = torch.hub.load('facebookresearch/dino:main', ver) model = model.eval() def remove_cls_and_reshape(x): x = x.clone() x = x[:, 1:] hw = np.sqrt(x.shape[1]).astype(int) x = rearrange(x, "b (h w) c -> b h w c", h=hw) return x def new_forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) self.attn_output = remove_cls_and_reshape(y.clone()) if return_attention: return attn x = x + self.drop_path(y) mlp_output = self.mlp(self.norm2(x)) self.mlp_output = remove_cls_and_reshape(mlp_output.clone()) x = x + self.drop_path(mlp_output) self.block_output = remove_cls_and_reshape(x.clone()) return x setattr(model.blocks[0].__class__, "forward", new_forward) self.model = model self.model.eval() self.model.requires_grad_(False) def forward(self, x): out = self.model(x) attn_outputs = [block.attn_output for block in self.model.blocks] mlp_outputs = [block.mlp_output for block in self.model.blocks] block_outputs = [block.block_output for block in self.model.blocks] return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["DiNO(dino_vitb8)"] = partial(DiNO) LAYER_DICT["DiNO(dino_vitb8)"] = 12 RES_DICT["DiNO(dino_vitb8)"] = (448, 448) def resample_position_embeddings(embeddings, h, w): cls_embeddings = embeddings[0] patch_embeddings = embeddings[1:] # [14*14, 768] hw = np.sqrt(patch_embeddings.shape[0]).astype(int) patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw) patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0) patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c") embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0) return embeddings # class CLIP(torch.nn.Module): # def __init__(self, ver="openai/clip-vit-base-patch16"): # super().__init__() # from transformers import CLIPProcessor, CLIPModel # model = CLIPModel.from_pretrained(ver) # # resample the patch embeddings to 56x56, take 896x896 input # embeddings = model.vision_model.embeddings.position_embedding.weight # embeddings = resample_position_embeddings(embeddings, 42, 42) # model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings) # model.vision_model.embeddings.position_ids = torch.arange(0, 1+56*56) # # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") # self.model = model.eval() # def new_forward( # self, # hidden_states: torch.Tensor, # attention_mask: torch.Tensor, # causal_attention_mask: torch.Tensor, # output_attentions: Optional[bool] = False, # ) -> Tuple[torch.FloatTensor]: # residual = hidden_states # hidden_states = self.layer_norm1(hidden_states) # hidden_states, attn_weights = self.self_attn( # hidden_states=hidden_states, # attention_mask=attention_mask, # causal_attention_mask=causal_attention_mask, # output_attentions=output_attentions, # ) # hw = np.sqrt(hidden_states.shape[1] - 1).astype(int) # self.attn_output = rearrange( # hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw # ) # hidden_states = residual + hidden_states # residual = hidden_states # hidden_states = self.layer_norm2(hidden_states) # hidden_states = self.mlp(hidden_states) # self.mlp_output = rearrange( # hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw # ) # hidden_states = residual + hidden_states # outputs = (hidden_states,) # if output_attentions: # outputs += (attn_weights,) # self.block_output = rearrange( # hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw # ) # return outputs # setattr( # self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward # ) # @torch.no_grad() # def forward(self, x): # out = self.model.vision_model(x) # attn_outputs, mlp_outputs, block_outputs = [], [], [] # for i, blk in enumerate(self.model.vision_model.encoder.layers): # attn_outputs.append(blk.attn_output) # mlp_outputs.append(blk.mlp_output) # block_outputs.append(blk.block_output) # attn_outputs = torch.stack(attn_outputs) # mlp_outputs = torch.stack(mlp_outputs) # block_outputs = torch.stack(block_outputs) # return attn_outputs, mlp_outputs, block_outputs # MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = partial(CLIP, ver="openai/clip-vit-base-patch16") # LAYER_DICT["CLIP(openai/clip-vit-base-patch16)"] = 12 # RES_DICT["CLIP(openai/clip-vit-base-patch16)"] = (896, 896) class OpenCLIPViT(nn.Module): def __init__(self, version='ViT-B-16', pretrained='laion2b_s34b_b88k'): super().__init__() try: import open_clip except ImportError: print("Please install open_clip to use this class.") return model, _, _ = open_clip.create_model_and_transforms(version, pretrained=pretrained) positional_embedding = resample_position_embeddings(model.visual.positional_embedding, 42, 42) model.visual.positional_embedding = nn.Parameter(positional_embedding) def new_forward( self, q_x: torch.Tensor, k_x: Optional[torch.Tensor] = None, v_x: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ): def remove_cls_and_reshape(x): x = x.clone() x = x[1:] hw = np.sqrt(x.shape[0]).astype(int) x = rearrange(x, "(h w) b c -> b h w c", h=hw) return x k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None attn_output = self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask) self.attn_output = remove_cls_and_reshape(attn_output.clone()) x = q_x + self.ls_1(attn_output) mlp_output = self.mlp(self.ln_2(x)) self.mlp_output = remove_cls_and_reshape(mlp_output.clone()) x = x + self.ls_2(mlp_output) self.block_output = remove_cls_and_reshape(x.clone()) return x setattr(model.visual.transformer.resblocks[0].__class__, "forward", new_forward) self.model = model self.model.eval() def forward(self, x): out = self.model(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for block in self.model.visual.transformer.resblocks: attn_outputs.append(block.attn_output) mlp_outputs.append(block.mlp_output) block_outputs.append(block.block_output) return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["CLIP(ViT-B-16/openai)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='openai') LAYER_DICT["CLIP(ViT-B-16/openai)"] = 12 RES_DICT["CLIP(ViT-B-16/openai)"] = (672, 672) MODEL_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='laion2b_s34b_b88k') LAYER_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = 12 RES_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = (672, 672) class EVA02(nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) model = timm.create_model( 'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() def new_forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): def remove_cls_and_reshape(x): x = x.clone() x = x[:, 1:] hw = np.sqrt(x.shape[1]).astype(int) x = rearrange(x, "b (h w) c -> b h w c", h=hw) return x if self.gamma_1 is None: attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask) self.attn_output = remove_cls_and_reshape(attn_output.clone()) x = x + self.drop_path1(attn_output) mlp_output = self.mlp(self.norm2(x)) self.mlp_output = remove_cls_and_reshape(mlp_output.clone()) x = x + self.drop_path2(mlp_output) else: attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask) self.attn_output = remove_cls_and_reshape(attn_output.clone()) x = x + self.drop_path1(self.gamma_1 * attn_output) mlp_output = self.mlp(self.norm2(x)) self.mlp_output = remove_cls_and_reshape(mlp_output.clone()) x = x + self.drop_path2(self.gamma_2 * mlp_output) self.block_output = remove_cls_and_reshape(x.clone()) return x setattr(model.blocks[0].__class__, "forward", new_forward) self.model = model def forward(self, x): out = self.model(x) attn_outputs = [block.attn_output for block in self.model.blocks] mlp_outputs = [block.mlp_output for block in self.model.blocks] block_outputs = [block.block_output for block in self.model.blocks] return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["EVA-CLIP(eva02_large_patch14_448)"] = partial(EVA02) LAYER_DICT["EVA-CLIP(eva02_large_patch14_448)"] = 24 RES_DICT["EVA-CLIP(eva02_large_patch14_448)"] = (448, 448) class CLIPConvnext(nn.Module): def __init__(self): super().__init__() try: import open_clip except ImportError: print("Please install open_clip to use this class.") return model, _, _ = open_clip.create_model_and_transforms('convnext_base_w_320', pretrained='laion_aesthetic_s13b_b82k') def new_forward(self, x): shortcut = x x = self.conv_dw(x) if self.use_conv_mlp: x = self.norm(x) x = self.mlp(x) else: x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.mlp(x) x = x.permute(0, 3, 1, 2) if self.gamma is not None: x = x.mul(self.gamma.reshape(1, -1, 1, 1)) x = self.drop_path(x) + self.shortcut(shortcut) self.block_output = rearrange(x.clone(), "b c h w -> b h w c") return x setattr(model.visual.trunk.stages[0].blocks[0].__class__, "forward", new_forward) self.model = model self.model.eval() def forward(self, x): out = self.model(x) block_outputs = [] for stage in self.model.visual.trunk.stages: for block in stage.blocks: block_outputs.append(block.block_output) return { 'attn': None, 'mlp': None, 'block': block_outputs } MODEL_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = partial(CLIPConvnext) LAYER_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = 36 RES_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = (960, 960) class MAE(timm.models.vision_transformer.VisionTransformer): def __init__(self, **kwargs): super(MAE, self).__init__(**kwargs) sd = torch.hub.load_state_dict_from_url( "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth" ) checkpoint_model = sd["model"] state_dict = self.state_dict() for k in ["head.weight", "head.bias"]: if ( k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape ): print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # load pre-trained model msg = self.load_state_dict(checkpoint_model, strict=False) print(msg) # resample the patch embeddings to 56x56, take 896x896 input pos_embed = self.pos_embed[0] pos_embed = resample_position_embeddings(pos_embed, 42, 42) self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0)) self.img_size = (672, 672) self.patch_embed.img_size = (672, 672) self.requires_grad_(False) self.eval() def forward(self, x): self.saved_attn_node = self.ls1(self.attn(self.norm1(x))) x = x + self.saved_attn_node.clone() self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x))) x = x + self.saved_mlp_node.clone() self.saved_block_output = x.clone() return x setattr(self.blocks[0].__class__, "forward", forward) def forward(self, x): out = super().forward(x) def remove_cls_and_reshape(x): x = x.clone() x = x[:, 1:] hw = np.sqrt(x.shape[1]).astype(int) x = rearrange(x, "b (h w) c -> b h w c", h=hw) return x attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks] mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks] block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks] return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["MAE(vit_base)"] = partial(MAE) LAYER_DICT["MAE(vit_base)"] = 12 RES_DICT["MAE(vit_base)"] = (672, 672) class ImageNet(nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) model = timm.create_model( 'vit_base_patch16_224.augreg2_in21k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) # resample the patch embeddings to 56x56, take 896x896 input pos_embed = model.pos_embed[0] pos_embed = resample_position_embeddings(pos_embed, 42, 42) model.pos_embed = nn.Parameter(pos_embed.unsqueeze(0)) model.img_size = (672, 672) model.patch_embed.img_size = (672, 672) model.requires_grad_(False) model.eval() def forward(self, x): self.saved_attn_node = self.ls1(self.attn(self.norm1(x))) x = x + self.saved_attn_node.clone() self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x))) x = x + self.saved_mlp_node.clone() self.saved_block_output = x.clone() return x setattr(model.blocks[0].__class__, "forward", forward) self.model = model def forward(self, x): out = self.model(x) def remove_cls_and_reshape(x): x = x.clone() x = x[:, 1:] hw = np.sqrt(x.shape[1]).astype(int) x = rearrange(x, "b (h w) c -> b h w c", h=hw) return x attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.model.blocks] mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.model.blocks] block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.model.blocks] return { 'attn': attn_outputs, 'mlp': mlp_outputs, 'block': block_outputs } MODEL_DICT["ImageNet(vit_base)"] = partial(ImageNet) LAYER_DICT["ImageNet(vit_base)"] = 12 RES_DICT["ImageNet(vit_base)"] = (672, 672) def download_all_models(): for model_name in MODEL_DICT: print(f"Downloading {model_name}") model = MODEL_DICT[model_name]() def get_all_model_names(): return list(MODEL_DICT.keys()) def get_model(model_name): return MODEL_DICT[model_name]() @torch.no_grad() def extract_features(images, model, model_name, node_type, layer, batch_size=8): use_cuda = torch.cuda.is_available() if use_cuda: model = model.cuda() chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size) outputs = [] for idxs in chunked_idxs: inp = images[idxs] if use_cuda: inp = inp.cuda() out = model(inp) # {'attn': [B, H, W, C], 'mlp': [B, H, W, C], 'block': [B, H, W, C]} out = out[node_type] out = out[layer] # normalize out = F.normalize(out, dim=-1) outputs.append(out.cpu().float()) outputs = torch.cat(outputs, dim=0) return outputs if __name__ == '__main__': inp = torch.rand(1, 3, 1024, 1024) model = MAE() out = model(inp) print(out[0][0].shape, out[0][1].shape, out[0][2].shape)