# Author: Huzheng Yang # %% import copy from functools import partial from io import BytesIO import os from einops import rearrange from matplotlib import pyplot as plt import matplotlib USE_HUGGINGFACE_ZEROGPU = os.getenv("USE_HUGGINGFACE_ZEROGPU", "False").lower() in ["true", "1", "yes"] DOWNLOAD_ALL_MODELS_DATASETS = os.getenv("DOWNLOAD_ALL_MODELS_DATASETS", "False").lower() in ["true", "1", "yes"] if USE_HUGGINGFACE_ZEROGPU: # huggingface ZeroGPU, dynamic GPU allocation try: import spaces except: USE_HUGGINGFACE_ZEROGPU = False if USE_HUGGINGFACE_ZEROGPU: BATCH_SIZE = 1 else: # run on local machine BATCH_SIZE = 1 import gradio as gr import torch import torch.nn.functional as F from PIL import Image import numpy as np import time import threading from ncut_pytorch.backbone import extract_features, load_model from ncut_pytorch.backbone import MODEL_DICT, LAYER_DICT, RES_DICT from ncut_pytorch import NCUT from ncut_pytorch import eigenvector_to_rgb, rotate_rgb_cube DATASET_TUPS = [ # (name, num_classes) ('UCSC-VLAA/Recap-COCO-30K', None), ('nateraw/pascal-voc-2012', None), ('johnowhitaker/imagenette2-320', 10), ('jainr3/diffusiondb-pixelart', None), ('nielsr/CelebA-faces', None), ('JapanDegitalMaterial/Places_in_Japan', None), ('Borismile/Anime-dataset', None), ('Multimodal-Fatima/CUB_train', 200), ('mrm8488/ImageNet1K-val', 1000), ("trashsock/hands-images", 8), ] DATASET_NAMES = [tup[0] for tup in DATASET_TUPS] DATASET_CLASSES = [tup[1] for tup in DATASET_TUPS] from datasets import load_dataset def download_all_datasets(): for name in DATASET_NAMES: print(f"Downloading {name}") try: load_dataset(name, trust_remote_code=True) except Exception as e: print(f"Error downloading {name}: {e}") def compute_ncut( features, num_eig=100, num_sample_ncut=10000, affinity_focal_gamma=0.3, knn_ncut=10, knn_tsne=10, embedding_method="UMAP", embedding_metric='euclidean', num_sample_tsne=300, perplexity=150, n_neighbors=150, min_dist=0.1, sampling_method="fps", metric="cosine", ): logging_str = "" num_nodes = np.prod(features.shape[:-1]) if num_nodes / 2 < num_eig: # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.") gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.") num_eig = num_nodes // 2 - 1 logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n" start = time.time() eigvecs, eigvals = NCUT( num_eig=num_eig, num_sample=num_sample_ncut, device="cuda" if torch.cuda.is_available() else "cpu", affinity_focal_gamma=affinity_focal_gamma, knn=knn_ncut, sample_method=sampling_method, distance=metric, normalize_features=False, ).fit_transform(features.reshape(-1, features.shape[-1])) # print(f"NCUT time: {time.time() - start:.2f}s") logging_str += f"NCUT time: {time.time() - start:.2f}s\n" start = time.time() _, rgb = eigenvector_to_rgb( eigvecs, method=embedding_method, metric=embedding_metric, num_sample=num_sample_tsne, perplexity=perplexity, n_neighbors=n_neighbors, min_distance=min_dist, knn=knn_tsne, device="cuda" if torch.cuda.is_available() else "cpu", ) logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n" rgb = rgb.reshape(features.shape[:-1] + (3,)) return rgb, logging_str, eigvecs def dont_use_too_much_green(image_rgb): # make sure the foval 40% of the image is red leading x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7) y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7) sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2)) sorted_indices = sum_values.argsort(descending=True) image_rgb = image_rgb[:, :, :, sorted_indices] return image_rgb def to_pil_images(images, target_size=512, resize=True): size = images[0].shape[1] multiplier = target_size // size res = int(size * multiplier) pil_images = [ Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)) for image in images ] if resize: pil_images = [ image.resize((res, res), Image.Resampling.NEAREST) for image in pil_images ] return pil_images def pil_images_to_video(images, output_path, fps=5): # from pil images to numpy images = [np.array(image) for image in images] # print("Saving video to", output_path) import cv2 fourcc = cv2.VideoWriter_fourcc(*'mp4v') height, width, _ = images[0].shape out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) for image in images: out.write(cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) out.release() return output_path # save up to 100 videos in disk class VideoCache: def __init__(self, max_videos=100): self.max_videos = max_videos self.videos = {} def add_video(self, video_path): if len(self.videos) >= self.max_videos: pop_path = self.videos.popitem()[0] try: os.remove(pop_path) except: pass self.videos[video_path] = video_path def get_video(self, video_path): return self.videos.get(video_path, None) video_cache = VideoCache() def get_random_path(length=10): import random import string name = ''.join(random.choices(string.ascii_lowercase + string.digits, k=length)) path = f'/tmp/{name}.mp4' return path default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/guitar_ego.jpg', './images/image_5.jpg'] default_outputs = ['./images/image-1.webp', './images/image-2.webp', './images/image-3.webp', './images/image-4.webp', './images/image-5.webp'] # default_outputs_independent = ['./images/image-6.webp', './images/image-7.webp', './images/image-8.webp', './images/image-9.webp', './images/image-10.webp'] default_outputs_independent = [] downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg'] downscaled_outputs = default_outputs example_items = downscaled_images[:3] + downscaled_outputs[:3] def run_alignedthreemodelattnnodes(images, model, batch_size=16): use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") if use_cuda: model = model.to(device) chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size) outputs = [] for idxs in chunked_idxs: inp = images[idxs] if use_cuda: inp = inp.to(device) out = model(inp) # normalize before save out = F.normalize(out, dim=-1) outputs.append(out.cpu().float()) outputs = torch.cat(outputs, dim=0) return outputs def _reds_colormap(image): # normed_data = image / image.max() # Normalize to [0, 1] normed_data = image colormap = matplotlib.colormaps['inferno'] # Get the Reds colormap colored_image = colormap(normed_data) # Apply colormap return (colored_image[..., :3] * 255).astype(np.uint8) # Convert to RGB # heatmap images def apply_reds_colormap(images, size): # for i_image in range(images.shape[0]): # images[i_image] -= images[i_image].min() # images[i_image] /= images[i_image].max() # normed_data = [_reds_colormap(images[i]) for i in range(images.shape[0])] # normed_data = np.stack(normed_data) normed_data = _reds_colormap(images) normed_data = torch.tensor(normed_data).float() normed_data = rearrange(normed_data, "b h w c -> b c h w") normed_data = torch.nn.functional.interpolate(normed_data, size=size, mode="nearest") normed_data = rearrange(normed_data, "b c h w -> b h w c") normed_data = normed_data.cpu().numpy().astype(np.uint8) return normed_data # Blend heatmap with the original image def blend_image_with_heatmap(image, heatmap, opacity1=0.5, opacity2=0.5): blended = (1 - opacity1) * image + opacity2 * heatmap return blended.astype(np.uint8) def make_cluster_plot(eigvecs, images, h=64, w=64): from ncut_pytorch.ncut_pytorch import farthest_point_sampling magnitude = torch.norm(eigvecs, dim=-1) p = 0.5 top_p_idx = magnitude.argsort(descending=True)[:int(p * magnitude.shape[0])] num_samples = 50 fps_idx = farthest_point_sampling(eigvecs[top_p_idx], num_samples) fps_idx = top_p_idx[fps_idx] # downsample to 256x256 images = F.interpolate(images, (256, 256), mode="bilinear") images = images.cpu().numpy() images = images.transpose(0, 2, 3, 1) images = images * 255 images = images.astype(np.uint8) # sort the fps_idx by the mean of the heatmap fps_heatmaps = {} sort_values = [] for _, idx in enumerate(fps_idx): device = 'cuda' if torch.cuda.is_available() else 'cpu' eigvecs = eigvecs.to(device) heatmap = F.cosine_similarity(eigvecs, eigvecs[idx][None], dim=-1) heatmap = heatmap.reshape(-1, h, w) mask = (heatmap > 0.5).float() sort_values.append(mask.mean().item()) fps_heatmaps[idx.item()] = heatmap.cpu() fig_images = [] i_cluster = 0 for i_fig in range(10): fig, axs = plt.subplots(3, 5, figsize=(15, 9)) for ax in axs.flatten(): ax.axis("off") for j, idx in enumerate(fps_idx[i_fig*5:i_fig*5+5]): heatmap = fps_heatmaps[idx.item()] mask = (heatmap > 0.1).float() sorted_image_idxs = torch.argsort(mask.mean((1, 2)), descending=True) size = (images.shape[1], images.shape[2]) heatmap = apply_reds_colormap(heatmap, size) for i, image_idx in enumerate(sorted_image_idxs[:3]): _heatmap = blend_image_with_heatmap(images[image_idx], heatmap[image_idx]) axs[i, j].imshow(_heatmap) if i == 0: axs[i, j].set_title(f"cluster {i_cluster+1}", fontsize=24) i_cluster += 1 plt.tight_layout(h_pad=0.5, w_pad=0.3) buf = BytesIO() plt.savefig(buf, bbox_inches='tight', dpi=72) buf.seek(0) # Move to the start of the BytesIO buffer img = Image.open(buf) img = img.convert("RGB") img = copy.deepcopy(img) buf.close() fig_images.append(img) plt.close() # plt.imshow(img) # plt.axis("off") # plt.show() return fig_images def ncut_run( model, images, model_name="DiNO(dino_vitb8_448)", layer=10, num_eig=100, node_type="block", affinity_focal_gamma=0.5, num_sample_ncut=10000, knn_ncut=10, embedding_method="tsne_3d", embedding_metric='euclidean', num_sample_tsne=1000, knn_tsne=10, perplexity=500, n_neighbors=500, min_dist=0.1, sampling_method="fps", old_school_ncut=False, recursion=False, recursion_l2_n_eigs=50, recursion_l3_n_eigs=20, recursion_metric="euclidean", recursion_l1_gamma=0.5, recursion_l2_gamma=0.5, recursion_l3_gamma=0.5, video_output=False, is_lisa=False, lisa_prompt1="", lisa_prompt2="", lisa_prompt3="", ): logging_str = "" if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper resolution = (224, 224) else: resolution = RES_DICT[model_name] logging_str += f"Resolution: {resolution}\n" if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne: # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.") gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.") logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n" perplexity = num_sample_tsne - 1 n_neighbors = num_sample_tsne - 1 if torch.cuda.is_available(): torch.cuda.empty_cache() node_type = node_type.split(":")[0].strip() start = time.time() if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper features = run_alignedthreemodelattnnodes(images, model, batch_size=BATCH_SIZE) elif is_lisa == True: # dirty patch for the LISA model features = [] with torch.no_grad(): model = model.cuda() images = images.cuda() lisa_prompts = [lisa_prompt1, lisa_prompt2, lisa_prompt3] for prompt in lisa_prompts: import bleach prompt = bleach.clean(prompt) prompt = prompt.strip() # print(prompt) # # copy the sting to a new string # copy_s = copy.copy(prompt) feature = model(images, input_str=prompt)[node_type][0] feature = F.normalize(feature, dim=-1) features.append(feature.cpu().float()) features = torch.stack(features) else: features = extract_features( images, model, node_type=node_type, layer=layer-1, batch_size=BATCH_SIZE ) # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s") logging_str += f"Backbone time: {time.time() - start:.2f}s\n" if recursion: rgbs = [] recursion_gammas = [recursion_l1_gamma, recursion_l2_gamma, recursion_l3_gamma] inp = features for i, n_eigs in enumerate([num_eig, recursion_l2_n_eigs, recursion_l3_n_eigs]): logging_str += f"Recursion #{i+1}\n" rgb, _logging_str, eigvecs = compute_ncut( inp, num_eig=n_eigs, num_sample_ncut=num_sample_ncut, affinity_focal_gamma=recursion_gammas[i], knn_ncut=knn_ncut, knn_tsne=knn_tsne, num_sample_tsne=num_sample_tsne, embedding_method=embedding_method, embedding_metric=embedding_metric, perplexity=perplexity, n_neighbors=n_neighbors, min_dist=min_dist, sampling_method=sampling_method, metric="cosine" if i == 0 else recursion_metric, ) logging_str += _logging_str if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper start = time.time() pil_images = [] for i_image in range(rgb.shape[0]): _im = plot_one_image_36_grid(images[i_image], rgb[i_image]) pil_images.append(_im) rgbs.append(pil_images) logging_str += f"plot time: {time.time() - start:.2f}s\n" else: rgb = dont_use_too_much_green(rgb) rgbs.append(to_pil_images(rgb)) inp = eigvecs.reshape(*features.shape[:-1], -1) if recursion_metric == "cosine": inp = F.normalize(inp, dim=-1) return rgbs[0], rgbs[1], rgbs[2], logging_str if old_school_ncut: # individual images logging_str += "Running NCut for each image independently\n" rgb = [] for i_image in range(features.shape[0]): logging_str += f"Image #{i_image+1}\n" feature = features[i_image] _rgb, _logging_str, _ = compute_ncut( feature[None], num_eig=num_eig, num_sample_ncut=30000, affinity_focal_gamma=affinity_focal_gamma, knn_ncut=1, knn_tsne=10, num_sample_tsne=300, embedding_method=embedding_method, embedding_metric=embedding_metric, perplexity=perplexity, n_neighbors=n_neighbors, min_dist=min_dist, sampling_method=sampling_method, ) logging_str += _logging_str rgb.append(_rgb[0]) cluster_images = None if not old_school_ncut: # ailgnedcut, joint across all images rgb, _logging_str, eigvecs = compute_ncut( features, num_eig=num_eig, num_sample_ncut=num_sample_ncut, affinity_focal_gamma=affinity_focal_gamma, knn_ncut=knn_ncut, knn_tsne=knn_tsne, num_sample_tsne=num_sample_tsne, embedding_method=embedding_method, embedding_metric=embedding_metric, perplexity=perplexity, n_neighbors=n_neighbors, min_dist=min_dist, sampling_method=sampling_method, ) logging_str += _logging_str if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper start = time.time() pil_images = [] for i_image in range(rgb.shape[0]): _im = plot_one_image_36_grid(images[i_image], rgb[i_image]) pil_images.append(_im) logging_str += f"plot time: {time.time() - start:.2f}s\n" return pil_images, logging_str if is_lisa == True: # dirty patch for the LISA model galleries = [] for i_prompt in range(len(lisa_prompts)): _rgb = rgb[i_prompt] galleries.append(to_pil_images(_rgb)) return *galleries, logging_str rgb = dont_use_too_much_green(rgb) if not video_output: start = time.time() h, w = features.shape[1], features.shape[2] if torch.cuda.is_available(): images = images.cuda() _images = reverse_transform_image(images, stablediffusion="stable" in model_name.lower()) cluster_images = make_cluster_plot(eigvecs, _images, h=h, w=w) logging_str += f"plot time: {time.time() - start:.2f}s\n" if video_output: video_path = get_random_path() video_cache.add_video(video_path) pil_images_to_video(to_pil_images(rgb), video_path) return video_path, logging_str return to_pil_images(rgb), cluster_images, logging_str def _ncut_run(*args, **kwargs): n_ret = kwargs.pop("n_ret", 1) # try: # if torch.cuda.is_available(): # torch.cuda.empty_cache() # ret = ncut_run(*args, **kwargs) # if torch.cuda.is_available(): # torch.cuda.empty_cache() # ret = list(ret)[:n_ret] + [ret[-1]] # return ret # except Exception as e: # gr.Error(str(e)) # if torch.cuda.is_available(): # torch.cuda.empty_cache() # return *(None for _ in range(n_ret)), "Error: " + str(e) ret = ncut_run(*args, **kwargs) ret = list(ret)[:n_ret] + [ret[-1]] return ret if USE_HUGGINGFACE_ZEROGPU: @spaces.GPU(duration=20) def quick_run(*args, **kwargs): return _ncut_run(*args, **kwargs) @spaces.GPU(duration=30) def long_run(*args, **kwargs): return _ncut_run(*args, **kwargs) @spaces.GPU(duration=60) def longer_run(*args, **kwargs): return _ncut_run(*args, **kwargs) @spaces.GPU(duration=120) def super_duper_long_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def cpu_run(*args, **kwargs): return _ncut_run(*args, **kwargs) if not USE_HUGGINGFACE_ZEROGPU: def quick_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def long_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def longer_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def super_duper_long_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def cpu_run(*args, **kwargs): return _ncut_run(*args, **kwargs) def extract_video_frames(video_path, max_frames=100): from decord import VideoReader vr = VideoReader(video_path) num_frames = len(vr) if num_frames > max_frames: gr.Warning(f"Video has {num_frames} frames. Only using {max_frames} frames. Evenly spaced.") frame_idx = np.linspace(0, num_frames - 1, max_frames, dtype=int).tolist() else: frame_idx = list(range(num_frames)) frames = vr.get_batch(frame_idx).asnumpy() # return as list of PIL images return [(Image.fromarray(frames[i]), "") for i in range(frames.shape[0])] def transform_image(image, resolution=(1024, 1024), stablediffusion=False): image = image.convert('RGB').resize(resolution, Image.LANCZOS) # Convert to torch tensor image = torch.tensor(np.array(image).transpose(2, 0, 1)).float() image = image / 255 # Normalize if not stablediffusion: mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] image = (image - torch.tensor(mean).view(3, 1, 1)) / torch.tensor(std).view(3, 1, 1) if stablediffusion: image = image * 2 - 1 return image def reverse_transform_image(image, stablediffusion=False): if stablediffusion: image = (image + 1) / 2 else: mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(image.device) std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(image.device) image = image * std + mean image = torch.clamp(image, 0, 1) return image def plot_one_image_36_grid(original_image, tsne_rgb_images): mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] original_image = original_image * torch.tensor(std).view(3, 1, 1) + torch.tensor(mean).view(3, 1, 1) original_image = torch.clamp(original_image, 0, 1) fig = plt.figure(figsize=(20, 4)) grid = plt.GridSpec(3, 14, hspace=0.1, wspace=0.1) ax1 = fig.add_subplot(grid[0:2, 0:2]) img = original_image.cpu().float().numpy().transpose(1, 2, 0) def convert_and_pad_image(np_array, pad_size=20): """ Converts a NumPy array of shape (height, width, 3) to a PNG image and pads the right and bottom sides with a transparent background. Args: np_array (numpy.ndarray): Input NumPy array of shape (height, width, 3) pad_size (int, optional): Number of pixels to pad on the right and bottom sides. Default is 20. Returns: PIL.Image: Padded PNG image with transparent background """ # Convert NumPy array to PIL Image img = Image.fromarray(np_array) # Get the original size width, height = img.size # Create a new image with padding and transparent background new_width = width + pad_size new_height = height + pad_size padded_img = Image.new('RGBA', (new_width, new_height), color=(255, 255, 255, 0)) # Paste the original image onto the padded image padded_img.paste(img, (0, 0)) return padded_img img = convert_and_pad_image((img*255).astype(np.uint8)) ax1.imshow(img) ax1.axis('off') model_names = ['CLIP', 'DINO', 'MAE'] for i_model, model_name in enumerate(model_names): for i_layer in range(12): ax = fig.add_subplot(grid[i_model, i_layer+2]) ax.imshow(tsne_rgb_images[i_layer+12*i_model].cpu().float().numpy()) ax.axis('off') if i_model == 0: ax.set_title(f'Layer{i_layer}', fontsize=16) if i_layer == 0: ax.text(-0.1, 0.5, model_name, va="center", ha="center", fontsize=16, transform=ax.transAxes, rotation=90,) plt.tight_layout() buf = BytesIO() plt.savefig(buf, bbox_inches='tight', pad_inches=0, dpi=100) buf.seek(0) # Move to the start of the BytesIO buffer img = Image.open(buf) img = img.convert("RGB") img = copy.deepcopy(img) buf.close() plt.close() return img def load_alignedthreemodel(): import sys if "alignedthreeattn" not in sys.path: for _ in range(3): os.system("git clone https://huggingface.co/huzey/alignedthreeattn >> /dev/null 2>&1") os.system("git -C alignedthreeattn pull >> /dev/null 2>&1") # add to path sys.path.append("alignedthreeattn") from alignedthreeattn.alignedthreeattn_model import ThreeAttnNodes align_weights = torch.load("alignedthreeattn/align_weights.pth") model = ThreeAttnNodes(align_weights) return model promptable_diffusion_models = ["Diffusion(stabilityai/stable-diffusion-2)", "Diffusion(CompVis/stable-diffusion-v1-4)"] promptable_segmentation_models = ["LISA(xinlai/LISA-7B-v1)"] def run_fn( images, model_name="DiNO(dino_vitb8_448)", layer=10, num_eig=100, node_type="block", positive_prompt="", negative_prompt="", is_lisa=False, lisa_prompt1="", lisa_prompt2="", lisa_prompt3="", affinity_focal_gamma=0.5, num_sample_ncut=10000, knn_ncut=10, embedding_method="tsne_3d", embedding_metric='euclidean', num_sample_tsne=300, knn_tsne=10, perplexity=150, n_neighbors=150, min_dist=0.1, sampling_method="fps", old_school_ncut=False, max_frames=100, recursion=False, recursion_l2_n_eigs=50, recursion_l3_n_eigs=20, recursion_metric="euclidean", recursion_l1_gamma=0.5, recursion_l2_gamma=0.5, recursion_l3_gamma=0.5, n_ret=1, ): if images is None: gr.Warning("No images selected.") return *(None for _ in range(n_ret)), "No images selected." video_output = False if isinstance(images, str): images = extract_video_frames(images, max_frames=max_frames) video_output = True if sampling_method == "fps": sampling_method = "farthest" # resize the images before acquiring GPU if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper resolution = (224, 224) else: resolution = RES_DICT[model_name] images = [tup[0] for tup in images] stablediffusion = True if "Diffusion" in model_name else False images = [transform_image(image, resolution=resolution, stablediffusion=stablediffusion) for image in images] images = torch.stack(images) if is_lisa: import subprocess import sys import importlib gr.Warning("LISA model is not compatible with the current version of transformers. Please contact the LISA and Llava author for update.") gr.Warning("This is a dirty patch for the LISA model. switch to the old version of transformers.") gr.Warning("Not garanteed to work.") # LISA and Llava is not compatible with the current version of transformers # please contact the author for update # this is a dirty patch for the LISA model # pre-import the SD3 pipeline from diffusers import StableDiffusion3Pipeline # unloading the current transformers for module in list(sys.modules.keys()): if "transformers" in module: del sys.modules[module] def install_transformers_version(version, target_dir): """Install a specific version of transformers to a target directory.""" if not os.path.exists(target_dir): os.makedirs(target_dir) # Use subprocess to run the pip command # subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'transformers=={version}', '-t', target_dir]) os.system(f"{sys.executable} -m pip install transformers=={version} -t {target_dir} >> /dev/null 2>&1") target_dir = '/tmp/lisa_transformers_v433' if not os.path.exists(target_dir): install_transformers_version('4.33.0', target_dir) # Add the new version path to sys.path sys.path.insert(0, target_dir) transformers = importlib.import_module("transformers") if not is_lisa: import subprocess import sys import importlib # remove the LISA model from the sys.path if "/tmp/lisa_transformers_v433" in sys.path: sys.path.remove("/tmp/lisa_transformers_v433") transformers = importlib.import_module("transformers") if "AlignedThreeModelAttnNodes" == model_name: # dirty patch for the alignedcut paper model = load_alignedthreemodel() else: model = load_model(model_name) if "stable" in model_name.lower() and "diffusion" in model_name.lower(): model.timestep = layer layer = 1 if model_name in promptable_diffusion_models: model.positive_prompt = positive_prompt model.negative_prompt = negative_prompt kwargs = { "model_name": model_name, "layer": layer, "num_eig": num_eig, "node_type": node_type, "affinity_focal_gamma": affinity_focal_gamma, "num_sample_ncut": num_sample_ncut, "knn_ncut": knn_ncut, "embedding_method": embedding_method, "embedding_metric": embedding_metric, "num_sample_tsne": num_sample_tsne, "knn_tsne": knn_tsne, "perplexity": perplexity, "n_neighbors": n_neighbors, "min_dist": min_dist, "sampling_method": sampling_method, "old_school_ncut": old_school_ncut, "recursion": recursion, "recursion_l2_n_eigs": recursion_l2_n_eigs, "recursion_l3_n_eigs": recursion_l3_n_eigs, "recursion_metric": recursion_metric, "recursion_l1_gamma": recursion_l1_gamma, "recursion_l2_gamma": recursion_l2_gamma, "recursion_l3_gamma": recursion_l3_gamma, "video_output": video_output, "lisa_prompt1": lisa_prompt1, "lisa_prompt2": lisa_prompt2, "lisa_prompt3": lisa_prompt3, "is_lisa": is_lisa, "n_ret": n_ret, } # print(kwargs) if old_school_ncut: return super_duper_long_run(model, images, **kwargs) if is_lisa: return super_duper_long_run(model, images, **kwargs) num_images = len(images) if num_images >= 100: return super_duper_long_run(model, images, **kwargs) if 'diffusion' in model_name.lower(): return super_duper_long_run(model, images, **kwargs) if recursion: return longer_run(model, images, **kwargs) if num_images >= 50: return longer_run(model, images, **kwargs) if old_school_ncut: return longer_run(model, images, **kwargs) if num_images >= 10: return long_run(model, images, **kwargs) if embedding_method == "UMAP": if perplexity >= 250 or num_sample_tsne >= 500: return longer_run(model, images, **kwargs) return long_run(model, images, **kwargs) if embedding_method == "t-SNE": if perplexity >= 250 or num_sample_tsne >= 500: return long_run(model, images, **kwargs) return quick_run(model, images, **kwargs) return quick_run(model, images, **kwargs) def make_input_images_section(): gr.Markdown('### Input Images') input_gallery = gr.Gallery(value=None, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False) submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop') return input_gallery, submit_button, clear_images_button def make_input_video_section(): # gr.Markdown('### Input Video') input_gallery = gr.Video(value=None, label="Select video", elem_id="video-input", height="auto", show_share_button=False, interactive=True) gr.Markdown('_image backbone model is used to extract features from each frame, NCUT is computed on all frames_') # max_frames_number = gr.Number(100, label="Max frames", elem_id="max_frames") max_frames_number = gr.Slider(1, 200, step=1, label="Max frames", value=100, elem_id="max_frames") submit_button = gr.Button("🔴 RUN", elem_id="submit_button", variant='primary') clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button', variant='stop') return input_gallery, submit_button, clear_images_button, max_frames_number def make_dataset_images_section(advanced=False, is_random=False): gr.Markdown('### Load Datasets') load_images_button = gr.Button("🔴 Load Images", elem_id="load-images-button", variant='primary') advanced_radio = gr.Radio(["Basic", "Advanced"], label="Datasets", value="Advanced" if advanced else "Basic", elem_id="advanced-radio") with gr.Column() as basic_block: example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery") with gr.Column() as advanced_block: dataset_names = DATASET_NAMES dataset_classes = DATASET_CLASSES with gr.Row(): dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="mrm8488/ImageNet1K-val", elem_id="dataset", min_width=300) num_images_slider = gr.Number(10, label="Number of images", elem_id="num_images") if not is_random: filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox") filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=True) is_random_checkbox = gr.Checkbox(label="Random shuffle", value=False, elem_id="random_seed_checkbox") random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=False) if is_random: filter_by_class_checkbox = gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox") filter_by_class_text = gr.Textbox(label="Class to select", value="0,33,99", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. (1000 classes)", visible=False) is_random_checkbox = gr.Checkbox(label="Random shuffle", value=True, elem_id="random_seed_checkbox") random_seed_slider = gr.Slider(0, 1000, step=1, label="Random seed", value=42, elem_id="random_seed", visible=True) if advanced: advanced_block.visible = True basic_block.visible = False else: advanced_block.visible = False basic_block.visible = True # change visibility advanced_radio.change(fn=lambda x: gr.update(visible=x=="Advanced"), inputs=advanced_radio, outputs=[advanced_block]) advanced_radio.change(fn=lambda x: gr.update(visible=x=="Basic"), inputs=advanced_radio, outputs=[basic_block]) def change_filter_options(dataset_name): idx = dataset_names.index(dataset_name) num_classes = dataset_classes[idx] if num_classes is None: return (gr.Checkbox(label="Filter by class", value=False, elem_id="filter_by_class_checkbox", visible=False), gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info="e.g. `0,1,2`. This dataset has no class label", visible=False)) return (gr.Checkbox(label="Filter by class", value=True, elem_id="filter_by_class_checkbox", visible=True), gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=True)) dataset_dropdown.change(fn=change_filter_options, inputs=dataset_dropdown, outputs=[filter_by_class_checkbox, filter_by_class_text]) def change_filter_by_class(is_filter, dataset_name): idx = dataset_names.index(dataset_name) num_classes = dataset_classes[idx] return gr.Textbox(label="Class to select", value="0,1,2", elem_id="filter_by_class_text", info=f"e.g. `0,1,2`. ({num_classes} classes)", visible=is_filter) filter_by_class_checkbox.change(fn=change_filter_by_class, inputs=[filter_by_class_checkbox, dataset_dropdown], outputs=filter_by_class_text) def change_random_seed(is_random): return gr.Slider(0, 1000, step=1, label="Random seed", value=1, elem_id="random_seed", visible=is_random) is_random_checkbox.change(fn=change_random_seed, inputs=is_random_checkbox, outputs=random_seed_slider) def load_dataset_images(is_advanced, dataset_name, num_images=10, is_filter=True, filter_by_class_text="0,1,2", is_random=False, seed=1): if is_advanced == "Basic": gr.Info("Loaded images from Ego-Exo4D") return default_images try: dataset = load_dataset(dataset_name, trust_remote_code=True) key = list(dataset.keys())[0] dataset = dataset[key] except Exception as e: gr.Error(f"Error loading dataset {dataset_name}: {e}") return None if num_images > len(dataset): num_images = len(dataset) if is_filter: classes = [int(i) for i in filter_by_class_text.split(",")] labels = np.array(dataset['label']) unique_labels = np.unique(labels) valid_classes = [i for i in classes if i in unique_labels] invalid_classes = [i for i in classes if i not in unique_labels] if len(invalid_classes) > 0: gr.Warning(f"Classes {invalid_classes} not found in the dataset.") if len(valid_classes) == 0: gr.Error(f"Classes {classes} not found in the dataset.") return None # shuffle each class chunk_size = num_images // len(valid_classes) image_idx = [] for i in valid_classes: idx = np.where(labels == i)[0] if is_random: idx = np.random.RandomState(seed).choice(idx, chunk_size, replace=False) else: idx = idx[:chunk_size] image_idx.extend(idx.tolist()) if not is_filter: if is_random: image_idx = np.random.RandomState(seed).choice(len(dataset), num_images, replace=False).tolist() else: image_idx = list(range(num_images)) images = [dataset[i]['image'] for i in image_idx] gr.Info(f"Loaded {len(images)} images from {dataset_name}") return images load_images_button.click(load_dataset_images, inputs=[advanced_radio, dataset_dropdown, num_images_slider, filter_by_class_checkbox, filter_by_class_text, is_random_checkbox, random_seed_slider], outputs=[input_gallery]) return dataset_dropdown, num_images_slider, random_seed_slider, load_images_button # def random_rotate_rgb_gallery(images): # if images is None or len(images) == 0: # gr.Warning("No images selected.") # return [] # # read webp images # images = [Image.open(image[0]).convert("RGB") for image in images] # images = [np.array(image).astype(np.float32) for image in images] # images = np.stack(images) # images = torch.tensor(images) / 255 # position = np.random.choice([1, 2, 4, 5, 6]) # images = rotate_rgb_cube(images, position) # images = to_pil_images(images, resize=False) # return images def protect_original_image_in_plot(original_image, rotated_images): plot_h, plot_w = 332, 1542 image_h, image_w = original_image.shape[1], original_image.shape[2] if not (plot_h == image_h and plot_w == image_w): return rotated_images protection_w = 190 rotated_images[:, :, :protection_w] = original_image[:, :, :protection_w] return rotated_images def sequence_rotate_rgb_gallery(images): if images is None or len(images) == 0: gr.Warning("No images selected.") return [] # read webp images images = [Image.open(image[0]).convert("RGB") for image in images] images = [np.array(image).astype(np.float32) for image in images] images = np.stack(images) images = torch.tensor(images) / 255 original_images = images.clone() rotation_matrix = torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).float() images = images @ rotation_matrix images = protect_original_image_in_plot(original_images, images) images = to_pil_images(images, resize=False) return images def flip_rgb_gallery(images, axis=0): if images is None or len(images) == 0: gr.Warning("No images selected.") return [] # read webp images images = [Image.open(image[0]).convert("RGB") for image in images] images = [np.array(image).astype(np.float32) for image in images] images = np.stack(images) images = torch.tensor(images) / 255 original_images = images.clone() images = 1 - images images = protect_original_image_in_plot(original_images, images) images = to_pil_images(images, resize=False) return images def add_output_images_buttons(output_gallery): with gr.Row(): rotate_button = gr.Button("🔄 Rotate", elem_id="rotate_button", variant='secondary') rotate_button.click(sequence_rotate_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) flip_button = gr.Button("🔃 Flip", elem_id="flip_button", variant='secondary') flip_button.click(flip_rgb_gallery, inputs=[output_gallery], outputs=[output_gallery]) return rotate_button, flip_button def make_output_images_section(): gr.Markdown('### Output Images') output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto", show_share_button=True, interactive=False) add_output_images_buttons(output_gallery) return output_gallery def make_parameters_section(is_lisa=False, model_ratio=True): gr.Markdown("### Parameters Help") from ncut_pytorch.backbone import list_models, get_demo_model_names model_names = list_models() model_names = sorted(model_names) def get_filtered_model_names(name): return [m for m in model_names if name.lower() in m.lower()] def get_default_model_name(name): lst = get_filtered_model_names(name) if len(lst) > 1: return lst[1] return lst[0] if is_lisa: model_dropdown = gr.Dropdown(["LISA(xinlai/LISA-7B-v1)"], label="Backbone", value="LISA(xinlai/LISA-7B-v1)", elem_id="model_name") layer_slider = gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False) layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False) negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False) node_type_dropdown = gr.Dropdown(layer_names, label="LISA (SAM) decoder: Layer and Node", value="dec_1_block", elem_id="node_type") else: model_radio = gr.Radio(["CLIP", "DiNO", "Diffusion", "ImageNet", "MAE", "SAM"], label="Backbone", value="DiNO", elem_id="model_radio", show_label=True, visible=model_ratio) model_dropdown = gr.Dropdown(get_filtered_model_names("DiNO"), label="", value="DiNO(dino_vitb8_448)", elem_id="model_name", show_label=False) model_radio.change(fn=lambda x: gr.update(choices=get_filtered_model_names(x), value=get_default_model_name(x)), inputs=model_radio, outputs=[model_dropdown]) layer_slider = gr.Slider(1, 12, step=1, label="Backbone: Layer index", value=10, elem_id="layer") positive_prompt = gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'") positive_prompt.visible = False negative_prompt = gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'") negative_prompt.visible = False node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?") num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for smaller clusters') def change_layer_slider(model_name): # SD2, UNET if "stable" in model_name.lower() and "diffusion" in model_name.lower(): from ncut_pytorch.backbone import SD_KEY_DICT default_layer = 'up_2_resnets_1_block' if 'diffusion-3' not in model_name else 'block_23' return (gr.Slider(1, 49, step=1, label="Diffusion: Timestep (Noise)", value=5, elem_id="layer", visible=True, info="Noise level, 50 is max noise"), gr.Dropdown(SD_KEY_DICT[model_name], label="Diffusion: Layer and Node", value=default_layer, elem_id="node_type", info="U-Net (v1, v2) or DiT (v3)")) if model_name == "LISSL(xinlai/LISSL-7B-v1)": layer_names = ["dec_0_input", "dec_0_attn", "dec_0_block", "dec_1_input", "dec_1_attn", "dec_1_block"] default_layer = "dec_1_block" return (gr.Slider(1, 6, step=1, label="LISA decoder: Layer index", value=6, elem_id="layer", visible=False, info=""), gr.Dropdown(layer_names, label="LISA decoder: Layer and Node", value=default_layer, elem_id="node_type")) layer_dict = LAYER_DICT if model_name in layer_dict: value = layer_dict[model_name] return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) else: value = 12 return (gr.Slider(1, value, step=1, label="Backbone: Layer index", value=value, elem_id="layer", visible=True, info=""), gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")) model_dropdown.change(fn=change_layer_slider, inputs=model_dropdown, outputs=[layer_slider, node_type_dropdown]) def change_prompt_text(model_name): if model_name in promptable_diffusion_models: return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=True), gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=True)) return (gr.Textbox(label="Prompt (Positive)", elem_id="prompt", placeholder="e.g. 'a photo of Gibson Les Pual guitar'", visible=False), gr.Textbox(label="Prompt (Negative)", elem_id="prompt", placeholder="e.g. 'a photo from egocentric view'", visible=False)) model_dropdown.change(fn=change_prompt_text, inputs=model_dropdown, outputs=[positive_prompt, negative_prompt]) with gr.Accordion("➡️ Click to expand: more parameters", open=False): gr.Markdown("Docs: How to Get Better Segmentation") affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation") num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation") sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method", info="Nyström approximation") knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation") embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method") embedding_metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="t-SNE/UMAP metric", value="euclidean", elem_id="embedding_metric") num_sample_tsne_slider = gr.Slider(100, 10000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation") knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation") perplexity_slider = gr.Slider(10, 1000, step=10, label="t-SNE: perplexity", value=150, elem_id="perplexity") n_neighbors_slider = gr.Slider(10, 1000, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors") min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist") return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt] demo = gr.Blocks( theme=gr.themes.Base(spacing_size='md', text_size='lg', primary_hue='blue', neutral_hue='slate', secondary_hue='pink'), # fill_width=False, # title="ncut-pytorch", ) with demo: with gr.Tab('AlignedCut'): with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section() logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information", autofocus=False, autoscroll=False) with gr.Column(scale=5, min_width=200): output_gallery = make_output_images_section() cluster_gallery = gr.Gallery(value=[], label="Clusters", show_label=False, elem_id="clusters", columns=[5], rows=[2], object_fit="contain", height="auto", show_share_button=True, preview=True, interactive=False) [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section() num_eig_slider.value = 30 clear_images_button.click(lambda x: ([], [], []), outputs=[input_gallery, output_gallery, cluster_gallery]) false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( partial(run_fn, n_ret=2), inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown ], outputs=[output_gallery, cluster_gallery, logging_text], api_name="API_AlignedCut" ) with gr.Tab('NCut'): gr.Markdown('#### NCut (Legacy), not aligned, no Nyström approximation') gr.Markdown('Each image is solved independently, color is not aligned across images') gr.Markdown('---') gr.Markdown('
NCut vs. AlignedCut
') with gr.Row(): with gr.Column(scale=5, min_width=200): gr.Markdown('#### Pros') gr.Markdown('- Easy Solution. Use less eigenvectors.') gr.Markdown('- Exact solution. No Nyström approximation.') with gr.Column(scale=5, min_width=200): gr.Markdown('#### Cons') gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.') gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.') gr.Markdown('---') with gr.Row(): with gr.Column(scale=5, min_width=200): gr.Markdown(' ') with gr.Column(scale=5, min_width=200): gr.Markdown('color is not aligned across images 👇') with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section() with gr.Column(scale=5, min_width=200): output_gallery = make_output_images_section() [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section() old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut") invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider, num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown] for item in invisible_list: item.visible = False # logging text box logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery]) false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( run_fn, inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, old_school_ncut_checkbox ], outputs=[output_gallery, logging_text], api_name="API_NCut", ) with gr.Tab('Recursive Cut'): gr.Markdown('NCUT can be applied recursively, the eigenvectors from previous iteration is the input for the next iteration NCUT. ') gr.Markdown('__Recursive NCUT__ amplifies small object parts, please see [Documentation](https://ncut-pytorch.readthedocs.io/en/latest/how_to_get_better_segmentation/#recursive-ncut)') gr.Markdown('---') with gr.Row(): with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Recursion #1)') l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) add_output_images_buttons(l1_gallery) with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Recursion #2)') l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) add_output_images_buttons(l2_gallery) with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Recursion #3)') l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) add_output_images_buttons(l3_gallery) with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True) num_images_slider.value = 100 clear_images_button.visible = False logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") with gr.Column(scale=5, min_width=200): with gr.Accordion("➡️ Recursion config", open=True): l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma") l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma") l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section() num_eig_slider.visible = False affinity_focal_gamma_slider.visible = False true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") true_placeholder.visible = False false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") false_placeholder.visible = False number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") number_placeholder.visible = False clear_images_button.click(lambda x: ([],), outputs=[input_gallery]) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( partial(run_fn, n_ret=3), inputs=[ input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, false_placeholder, number_placeholder, true_placeholder, l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider ], outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], api_name="API_RecursiveCut" ) with gr.Tab('Video'): with gr.Row(): with gr.Column(scale=5, min_width=200): video_input_gallery, submit_button, clear_video_button, max_frame_number = make_input_video_section() with gr.Column(scale=5, min_width=200): video_output_gallery = gr.Video(value=None, label="NCUT Embedding", elem_id="ncut", height="auto", show_share_button=False) [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section() num_sample_tsne_slider.value = 1000 perplexity_slider.value = 500 n_neighbors_slider.value = 500 knn_tsne_slider.value = 20 # logging text box logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") clear_video_button.click(lambda x: (None, None), outputs=[video_input_gallery, video_output_gallery]) place_holder_false = gr.Checkbox(label="Place holder", value=False, elem_id="place_holder_false") place_holder_false.visible = False false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( run_fn, inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, place_holder_false, max_frame_number ], outputs=[video_output_gallery, logging_text], api_name="API_VideoCut", ) with gr.Tab('Text'): try: from app_text import make_demo except ImportError: print("Debugging") from draft_gradio_app_text import make_demo make_demo() with gr.Tab('Vision-Language'): gr.Markdown('[LISA](https://arxiv.org/pdf/2308.00692) is a vision-language model. Input a text prompt and image, LISA generate segmentation masks.') gr.Markdown('In the mask decoder layers, LISA updates the image features w.r.t. the text prompt') gr.Markdown('This page aims to see how the text prompt affects the image features') gr.Markdown('---') gr.Markdown('Color is aligned across 3 prompts. NCUT is computed on the concatenated features from 3 prompts.
') with gr.Row(): with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Prompt #1)') l1_gallery = gr.Gallery(format='png', value=[], label="Prompt #1", show_label=False, elem_id="ncut_p1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) prompt1 = gr.Textbox(label="Input Prompt #1", elem_id="prompt1", value="where is the person, include the clothes, don't include the guitar and chair", lines=3) with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Prompt #2)') l2_gallery = gr.Gallery(format='png', value=[], label="Prompt #2", show_label=False, elem_id="ncut_p2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) prompt2 = gr.Textbox(label="Input Prompt #2", elem_id="prompt2", value="where is the Gibson Les Pual guitar", lines=3) with gr.Column(scale=5, min_width=200): gr.Markdown('### Output (Prompt #3)') l3_gallery = gr.Gallery(format='png', value=[], label="Prompt #3", show_label=False, elem_id="ncut_p3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) prompt3 = gr.Textbox(label="Input Prompt #3", elem_id="prompt3", value="where is the floor", lines=3) with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=False) clear_images_button.click(lambda x: ([], [], [], []), outputs=[input_gallery, l1_gallery, l2_gallery, l3_gallery]) with gr.Column(scale=5, min_width=200): [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section(is_lisa=True) logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") galleries = [l1_gallery, l2_gallery, l3_gallery] true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder", visible=False) submit_button.click( partial(run_fn, n_ret=len(galleries)), inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, true_placeholder, prompt1, prompt2, prompt3, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown ], outputs=galleries + [logging_text], ) with gr.Tab('Model Aligned'): gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') gr.Markdown('---') gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') gr.Markdown('') gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") gr.Markdown('---') with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True, is_random=True) num_images_slider.value = 100 with gr.Column(scale=5, min_width=200): output_gallery = make_output_images_section() gr.Markdown('### TIP1: use the `full-screen` button, and use `arrow keys` to navigate') gr.Markdown('---') gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') gr.Markdown('Layer type: attention output (attn), without sum of residual') gr.Markdown('### TIP2: for large image set, please increase the `num_sample` for t-SNE and NCUT') gr.Markdown('---') [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section(model_ratio=False) model_dropdown.value = "AlignedThreeModelAttnNodes" model_dropdown.visible = False layer_slider.visible = False node_type_dropdown.visible = False num_sample_ncut_slider.value = 10000 num_sample_tsne_slider.value = 1000 # logging text box logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery]) false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( run_fn, inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown ], # outputs=galleries + [logging_text], outputs=[output_gallery, logging_text], ) with gr.Tab('Model Aligned (+Rrecursion)'): gr.Markdown('This page reproduce the results from the paper [AlignedCut](https://arxiv.org/abs/2406.18344)') gr.Markdown('---') gr.Markdown('**Features are aligned across models and layers.** A linear alignment transform is trained for each model/layer, learning signal comes from 1) fMRI brain activation and 2) segmentation preserving eigen-constraints.') gr.Markdown('NCUT is computed on the concatenated graph of all models, layers, and images. Color is **aligned** across all models and layers.') gr.Markdown('') gr.Markdown("To see a good pattern, you will need to load 100~1000 images. 100 images need 10sec for RTX4090. Running out of HuggingFace GPU Quota? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") gr.Markdown('---') # with gr.Row(): # with gr.Column(scale=5, min_width=200): # gr.Markdown('### Output (Recursion #1)') # l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) # add_output_images_buttons(l1_gallery) # with gr.Column(scale=5, min_width=200): # gr.Markdown('### Output (Recursion #2)') # l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) # add_output_images_buttons(l2_gallery) # with gr.Column(scale=5, min_width=200): # gr.Markdown('### Output (Recursion #3)') # l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[3], rows=[5], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) # add_output_images_buttons(l3_gallery) gr.Markdown('### Output (Recursion #1)') l1_gallery = gr.Gallery(format='png', value=[], label="Recursion #1", show_label=False, elem_id="ncut_l1", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) add_output_images_buttons(l1_gallery) gr.Markdown('### Output (Recursion #2)') l2_gallery = gr.Gallery(format='png', value=[], label="Recursion #2", show_label=False, elem_id="ncut_l2", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) add_output_images_buttons(l2_gallery) gr.Markdown('### Output (Recursion #3)') l3_gallery = gr.Gallery(format='png', value=[], label="Recursion #3", show_label=False, elem_id="ncut_l3", columns=[100], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False, preview=True) add_output_images_buttons(l3_gallery) with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True, is_random=True) num_images_slider.value = 100 with gr.Column(scale=5, min_width=200): with gr.Accordion("➡️ Recursion config", open=True): l1_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #1: N eigenvectors", value=100, elem_id="l1_num_eig") l2_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #2: N eigenvectors", value=50, elem_id="l2_num_eig") l3_num_eig_slider = gr.Slider(1, 1000, step=1, label="Recursion #3: N eigenvectors", value=50, elem_id="l3_num_eig") metric_dropdown = gr.Dropdown(["euclidean", "cosine"], label="Recursion distance metric", value="cosine", elem_id="recursion_metric") l1_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #1: Affinity focal gamma", value=0.5, elem_id="recursion_l1_gamma") l2_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #2: Affinity focal gamma", value=0.5, elem_id="recursion_l2_gamma") l3_affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Recursion #3: Affinity focal gamma", value=0.5, elem_id="recursion_l3_gamma") gr.Markdown('---') gr.Markdown('Model: CLIP(ViT-B-16/openai), DiNOv2reg(dinov2_vitb14_reg), MAE(vit_base)') gr.Markdown('Layer type: attention output (attn), without sum of residual') [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section(model_ratio=False) num_eig_slider.visible = False affinity_focal_gamma_slider.visible = False model_dropdown.value = "AlignedThreeModelAttnNodes" model_dropdown.visible = False layer_slider.visible = False node_type_dropdown.visible = False num_sample_ncut_slider.value = 10000 num_sample_tsne_slider.value = 1000 # logging text box logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") clear_images_button.click(lambda x: ([],), outputs=[input_gallery]) true_placeholder = gr.Checkbox(label="True placeholder", value=True, elem_id="true_placeholder") true_placeholder.visible = False false_placeholder = gr.Checkbox(label="False placeholder", value=False, elem_id="false_placeholder") false_placeholder.visible = False number_placeholder = gr.Number(0, label="Number placeholder", elem_id="number_placeholder") number_placeholder.visible = False no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( partial(run_fn, n_ret=3), inputs=[ input_gallery, model_dropdown, layer_slider, l1_num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, false_placeholder, number_placeholder, true_placeholder, l2_num_eig_slider, l3_num_eig_slider, metric_dropdown, l1_affinity_focal_gamma_slider, l2_affinity_focal_gamma_slider, l3_affinity_focal_gamma_slider ], outputs=[l1_gallery, l2_gallery, l3_gallery, logging_text], ) with gr.Tab('Compare Models'): def add_one_model(i_model=1): with gr.Column(scale=5, min_width=200) as col: gr.Markdown(f'### Output Images') output_gallery = gr.Gallery(format='png', value=[], label="NCUT Embedding", show_label=False, elem_id=f"ncut{i_model}", columns=[3], rows=[1], object_fit="contain", height="auto", show_fullscreen_button=True, interactive=False) submit_button = gr.Button("🔴 RUN", elem_id=f"submit_button{i_model}", variant='primary') add_output_images_buttons(output_gallery) [ model_dropdown, layer_slider, node_type_dropdown, num_eig_slider, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown, positive_prompt, negative_prompt ] = make_parameters_section() # logging text box logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information") false_placeholder = gr.Checkbox(label="False", value=False, elem_id="false_placeholder", visible=False) no_prompt = gr.Textbox("", label="", elem_id="empty_placeholder", type="text", placeholder="", visible=False) submit_button.click( run_fn, inputs=[ input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, positive_prompt, negative_prompt, false_placeholder, no_prompt, no_prompt, no_prompt, affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, embedding_method_dropdown, embedding_metric_dropdown, num_sample_tsne_slider, knn_tsne_slider, perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown ], outputs=[output_gallery, logging_text] ) return col with gr.Row(): with gr.Column(scale=5, min_width=200): input_gallery, submit_button, clear_images_button = make_input_images_section() clear_images_button.click(lambda x: [], outputs=[input_gallery]) submit_button.visible = False dataset_dropdown, num_images_slider, random_seed_slider, load_images_button = make_dataset_images_section(advanced=True) for i in range(2): add_one_model() # Create rows and buttons in a loop rows = [] buttons = [] for i in range(4): row = gr.Row(visible=False) rows.append(row) with row: for j in range(3): with gr.Column(scale=5, min_width=200): add_one_model() button = gr.Button("➕ Add Compare", elem_id=f"add_button_{i}", visible=False if i > 0 else True, scale=3) buttons.append(button) if i > 0: # Reveal the current row and next button buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=row) buttons[i - 1].click(fn=lambda x: gr.update(visible=True), outputs=button) # Hide the current button buttons[i - 1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[i - 1]) # Last button only reveals the last row and hides itself buttons[-1].click(fn=lambda x: gr.update(visible=True), outputs=rows[-1]) buttons[-1].click(fn=lambda x: gr.update(visible=False), outputs=buttons[-1]) with gr.Tab('📄About'): gr.Markdown("**This demo is for the Python package `ncut-pytorch`, please visit the [Documentation](https://ncut-pytorch.readthedocs.io/)**") gr.Markdown("**All the models and functions used for this demo are in the Python package `ncut-pytorch`**") gr.Markdown("---") gr.Markdown("---") gr.Markdown("**Normalized Cuts**, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.") gr.Markdown("*Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000*") gr.Markdown("---") gr.Markdown("**We have improved NCut, with some advanced features:**") gr.Markdown("- **Nyström** Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).") gr.Markdown("- **spectral-tSNE** visualization, a new method to visualize the high-dimensional eigenvector space with 3D RGB cube. Color is aligned across images, color infers distance in representation.") gr.Markdown("*paper in prep, Yang 2024*") gr.Markdown("*AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee\*, and Jianbo Shi\*, 2024*") gr.Markdown("---") gr.Markdown("---") gr.Markdown('We thank the HuggingFace team for hosting this demo.
') with gr.Row(): with gr.Column(): gr.Markdown("##### This demo is for `ncut-pytorch`, [Documentation](https://ncut-pytorch.readthedocs.io/) ") with gr.Column(): gr.Markdown("###### Running out of GPU? Try [Demo](https://ncut-pytorch.readthedocs.io/en/latest/demo/) hosted at UPenn") # for local development if os.path.exists("/hf_token.txt"): os.environ["HF_ACCESS_TOKEN"] = open("/hf_token.txt").read().strip() demo.launch(share=True) if DOWNLOAD_ALL_MODELS_DATASETS: from ncut_pytorch.backbone import download_all_models t1 = threading.Thread(target=download_all_models).start() t1.join() t3 = threading.Thread(target=download_all_datasets).start() t3.join() from ncut_pytorch.backbone_text import download_all_models t2 = threading.Thread(target=download_all_models).start() t2.join() # # %% # # debug # # change working directory to "/" # os.chdir("/") # images = [(Image.open(image), None) for image in default_images] # ret = run_fn(images, num_eig=30) # # %% # %%