File size: 20,006 Bytes
68b0288
 
5c67556
68b0288
 
c471250
68b0288
 
 
 
 
 
 
 
 
 
 
c471250
 
68b0288
c471250
 
 
 
68b0288
c471250
 
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c67556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c67556
 
 
 
 
 
 
 
 
 
68b0288
 
 
 
 
 
 
5c67556
 
c471250
5c67556
c471250
5c67556
c471250
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c471250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c67556
c471250
5c67556
c471250
5c67556
 
c471250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
c471250
 
 
68b0288
c471250
5c67556
 
68b0288
c471250
 
68b0288
 
 
 
 
 
 
c471250
 
 
68b0288
 
 
 
 
 
 
 
 
 
 
 
c471250
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from typing import Optional, Tuple
from einops import rearrange
import requests
import torch
import torch.nn.functional as F
import timm
from PIL import Image
from torch import nn
import numpy as np
import os
import time

import gradio as gr

MODEL_DICT = {}


def transform_image(image, resolution=(1024, 1024), use_cuda=False):
    image = image.convert('RGB').resize(resolution, Image.Resampling.NEAREST)
    # Convert to torch tensor
    image = torch.tensor(np.array(image).transpose(2, 0, 1)).float()
    if use_cuda:
        image = image.cuda()
    image = image / 255
    # Normalize
    image = (image - 0.5) / 0.5
    return image

class MobileSAM(nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        from mobile_sam import sam_model_registry

        url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
        model_type = "vit_t"
        sam_checkpoint = "mobile_sam.pt"
        if not os.path.exists(sam_checkpoint):
            import requests

            r = requests.get(url)
            with open(sam_checkpoint, "wb") as f:
                f.write(r.content)

        mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

        def new_forward_fn(self, x):
            shortcut = x

            x = self.conv1(x)
            x = self.act1(x)

            x = self.conv2(x)
            x = self.act2(x)

            self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.conv3(x)

            self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.drop_path(x)

            x += shortcut
            x = self.act3(x)

            self.block_output = rearrange(x.clone(), "b c h w -> b h w c")

            return x

        setattr(
            mobile_sam.image_encoder.layers[0].blocks[0].__class__,
            "forward",
            new_forward_fn,
        )

        def new_forward_fn2(self, x):
            H, W = self.input_resolution
            B, L, C = x.shape
            assert L == H * W, "input feature has wrong size"
            res_x = x
            if H == self.window_size and W == self.window_size:
                x = self.attn(x)
            else:
                x = x.view(B, H, W, C)
                pad_b = (self.window_size - H % self.window_size) % self.window_size
                pad_r = (self.window_size - W % self.window_size) % self.window_size
                padding = pad_b > 0 or pad_r > 0

                if padding:
                    x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))

                pH, pW = H + pad_b, W + pad_r
                nH = pH // self.window_size
                nW = pW // self.window_size
                # window partition
                x = (
                    x.view(B, nH, self.window_size, nW, self.window_size, C)
                    .transpose(2, 3)
                    .reshape(B * nH * nW, self.window_size * self.window_size, C)
                )
                x = self.attn(x)
                # window reverse
                x = (
                    x.view(B, nH, nW, self.window_size, self.window_size, C)
                    .transpose(2, 3)
                    .reshape(B, pH, pW, C)
                )

                if padding:
                    x = x[:, :H, :W].contiguous()

                x = x.view(B, L, C)

            hw = np.sqrt(x.shape[1]).astype(int)
            self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)

            x = res_x + self.drop_path(x)

            x = x.transpose(1, 2).reshape(B, C, H, W)
            x = self.local_conv(x)
            x = x.view(B, C, L).transpose(1, 2)

            mlp_output = self.mlp(x)
            self.mlp_output = rearrange(
                mlp_output.clone(), "b (h w) c -> b h w c", h=hw
            )

            x = x + self.drop_path(mlp_output)
            self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
            return x

        setattr(
            mobile_sam.image_encoder.layers[1].blocks[0].__class__,
            "forward",
            new_forward_fn2,
        )

        mobile_sam.eval()
        self.image_encoder = mobile_sam.image_encoder

    @torch.no_grad()
    def forward(self, x):
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i_layer in range(len(self.image_encoder.layers)):
            for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
                blk = self.image_encoder.layers[i_layer].blocks[i_block]
                attn_outputs.append(blk.attn_output)
                mlp_outputs.append(blk.mlp_output)
                block_outputs.append(blk.block_output)
        return attn_outputs, mlp_outputs, block_outputs


MODEL_DICT["MobileSAM"] = MobileSAM()


class SAM(torch.nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        from segment_anything import sam_model_registry, SamPredictor
        from segment_anything.modeling.sam import Sam

        checkpoint = "sam_vit_b_01ec64.pth"
        if not os.path.exists(checkpoint):
            checkpoint_url = (
                "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
            )
            import requests

            r = requests.get(checkpoint_url)
            with open(checkpoint, "wb") as f:
                f.write(r.content)

        sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)

        from segment_anything.modeling.image_encoder import (
            window_partition,
            window_unpartition,
        )

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x
            x = self.norm1(x)
            # Window partition
            if self.window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, self.window_size)

            x = self.attn(x)
            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, self.window_size, pad_hw, (H, W))
            self.attn_output = x.clone()

            x = shortcut + x
            mlp_outout = self.mlp(self.norm2(x))
            self.mlp_output = mlp_outout.clone()
            x = x + mlp_outout
            self.block_output = x.clone()

            return x

        setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)

        self.image_encoder = sam.image_encoder
        self.image_encoder.eval()

    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.image_encoder.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)
        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


MODEL_DICT["SAM(sam_vit_b)"] = SAM()


class SAM2(nn.Module):

    def __init__(self, model_cfg='sam2_hiera_b+',):
        super().__init__()

        try:
            from sam2.build_sam import build_sam2
        except ImportError:
            print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git")
            return
        
        config_dict = {
            'sam2_hiera_large': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"),
            'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"),
            'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"),
            'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"),
        }
        filename, url = config_dict[model_cfg]
        if not os.path.exists(filename):
            print(f"Downloading {url}")
            r = requests.get(url)
            with open(filename, 'wb') as f:
                f.write(r.content)
        sam2_checkpoint = filename
        
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)

        image_encoder = sam2_model.image_encoder
        image_encoder.eval()
        
        from sam2.modeling.backbones.hieradet import do_pool
        from sam2.modeling.backbones.utils import window_partition, window_unpartition
        def new_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x  # B, H, W, C
            x = self.norm1(x)

            # Skip connection
            if self.dim != self.dim_out:
                shortcut = do_pool(self.proj(x), self.pool)

            # Window partition
            window_size = self.window_size
            if window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, window_size)

            # Window Attention + Q Pooling (if stage change)
            x = self.attn(x)
            if self.q_stride:
                # Shapes have changed due to Q pooling
                window_size = self.window_size // self.q_stride[0]
                H, W = shortcut.shape[1:3]

                pad_h = (window_size - H % window_size) % window_size
                pad_w = (window_size - W % window_size) % window_size
                pad_hw = (H + pad_h, W + pad_w)

            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, window_size, pad_hw, (H, W))

            self.attn_output = x.clone()
            
            x = shortcut + self.drop_path(x)
            # MLP
            mlp_out = self.mlp(self.norm2(x))
            self.mlp_output = mlp_out.clone()
            x = x + self.drop_path(mlp_out)
            self.block_output = x.clone()
            return x        
        
        setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward)
        
        self.image_encoder = image_encoder
        
        
        
    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self.image_encoder(x)
        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for block in self.image_encoder.trunk.blocks:
            attn_outputs.append(block.attn_output)
            mlp_outputs.append(block.mlp_output)
            block_outputs.append(block.block_output)
        return attn_outputs, mlp_outputs, block_outputs


MODEL_DICT["SAM2(sam2_hiera_b+)"] = SAM2(model_cfg='sam2_hiera_b+')
MODEL_DICT["SAM2(sam2_hiera_t)"] = SAM2(model_cfg='sam2_hiera_t')

class DiNOv2(torch.nn.Module):
    def __init__(self, ver="dinov2_vitb14_reg"):
        super().__init__()
        self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
        self.dinov2.requires_grad_(False)
        self.dinov2.eval()

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            def attn_residual_func(x):
                return self.ls1(self.attn(self.norm1(x)))

            def ffn_residual_func(x):
                return self.ls2(self.mlp(self.norm2(x)))

            attn_output = attn_residual_func(x)

            hw = np.sqrt(attn_output.shape[1] - 5).astype(int)
            self.attn_output = rearrange(
                attn_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
            )

            x = x + attn_output
            mlp_output = ffn_residual_func(x)
            self.mlp_output = rearrange(
                mlp_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
            )
            x = x + mlp_output
            block_output = x
            self.block_output = rearrange(
                block_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw
            )
            return x

        setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)

    @torch.no_grad()
    def forward(self, x):

        out = self.dinov2(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.dinov2.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


MODEL_DICT["DiNO(dinov2_vitb14_reg)"] = DiNOv2()

def resample_position_embeddings(embeddings, h, w):
    cls_embeddings = embeddings[0]
    patch_embeddings = embeddings[1:]  # [14*14, 768]
    hw = np.sqrt(patch_embeddings.shape[0]).astype(int)
    patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw)
    patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0)
    patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c")
    embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
    return embeddings

class CLIP(torch.nn.Module):
    def __init__(self):
        super().__init__()

        from transformers import CLIPProcessor, CLIPModel

        model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
                
        # resample the patch embeddings to 56x56, take 896x896 input
        embeddings = model.vision_model.embeddings.position_embedding.weight
        embeddings = resample_position_embeddings(embeddings, 56, 56)
        model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings)
        model.vision_model.embeddings.position_ids = torch.arange(0, 1+56*56)
        
        # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
        self.model = model.eval()

        def new_forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: torch.Tensor,
            causal_attention_mask: torch.Tensor,
            output_attentions: Optional[bool] = False,
        ) -> Tuple[torch.FloatTensor]:

            residual = hidden_states

            hidden_states = self.layer_norm1(hidden_states)
            hidden_states, attn_weights = self.self_attn(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                causal_attention_mask=causal_attention_mask,
                output_attentions=output_attentions,
            )
            hw = np.sqrt(hidden_states.shape[1] - 1).astype(int)
            self.attn_output = rearrange(
                hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
            )
            hidden_states = residual + hidden_states

            residual = hidden_states
            hidden_states = self.layer_norm2(hidden_states)
            hidden_states = self.mlp(hidden_states)
            self.mlp_output = rearrange(
                hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
            )

            hidden_states = residual + hidden_states

            outputs = (hidden_states,)

            if output_attentions:
                outputs += (attn_weights,)

            self.block_output = rearrange(
                hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
            )
            return outputs

        setattr(
            self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
        )

    @torch.no_grad()
    def forward(self, x):

        out = self.model.vision_model(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.model.vision_model.encoder.layers):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return attn_outputs, mlp_outputs, block_outputs


MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = CLIP()


class MAE(timm.models.vision_transformer.VisionTransformer):
    def __init__(self, **kwargs):
        super(MAE, self).__init__(**kwargs)

        sd = torch.hub.load_state_dict_from_url(
            "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth"
        )

        checkpoint_model = sd["model"]
        state_dict = self.state_dict()
        for k in ["head.weight", "head.bias"]:
            if (
                k in checkpoint_model
                and checkpoint_model[k].shape != state_dict[k].shape
            ):
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # load pre-trained model
        msg = self.load_state_dict(checkpoint_model, strict=False)
        print(msg)
        
        # resample the patch embeddings to 56x56, take 896x896 input
        pos_embed = self.pos_embed[0]
        pos_embed = resample_position_embeddings(pos_embed, 56, 56)
        self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
        self.img_size = (896, 896)
        self.patch_embed.img_size = (896, 896)

        self.requires_grad_(False)
        self.eval()
        
        def forward(self, x):
            self.saved_attn_node = self.ls1(self.attn(self.norm1(x)))
            x = x + self.saved_attn_node.clone()
            self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x)))
            x = x + self.saved_mlp_node.clone()
            self.saved_block_output = x.clone()
            return x
        
        setattr(self.blocks[0].__class__, "forward", forward)
        
    def forward(self, x):
        out = super().forward(x)
        def remove_cls_and_reshape(x):
            x = x.clone()
            x = x[:, 1:]
            hw = np.sqrt(x.shape[1]).astype(int)
            x = rearrange(x, "b (h w) c -> b h w c", h=hw)
            return x
        
        attn_nodes = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks]
        mlp_nodes = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks]
        block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks]
        return attn_nodes, mlp_nodes, block_outputs


MODEL_DICT["MAE(vit_base)"] = MAE()


def extract_features(images, model_name, node_type, layer):
    use_cuda = torch.cuda.is_available()
    
    resolution = (1024, 1024)
    resolution_dict = {
        "DiNO(dinov2_vitb14_reg)": (896, 896),
        'CLIP(openai/clip-vit-base-patch16)': (896, 896),
        'MAE(vit_base)': (896, 896),
    }
    if model_name in resolution_dict:
        resolution = resolution_dict[model_name]

    model = MODEL_DICT[model_name]

    if use_cuda:
        model = model.cuda()

    outputs = []
    for i in range(len(images)):
        image = transform_image(images[i], resolution=resolution, use_cuda=use_cuda)
        inp = image.unsqueeze(0)
        attn_output, mlp_output, block_output = model(inp)
        out_dict = {
            "attn": attn_output,
            "mlp": mlp_output,
            "block": block_output,
        }
        out = out_dict[node_type]
        out = out[layer]
        outputs.append(out)
    outputs = torch.cat(outputs, dim=0)

    return outputs

    
if __name__ == '__main__':
    inp = torch.rand(1, 3, 1024, 1024)
    model = MAE()
    out = model(inp)
    print(out[0][0].shape, out[0][1].shape, out[0][2].shape)