import gradio as gr import numpy as np import os import random import requests from PIL import Image from io import BytesIO MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 class APIClient: def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"): self.headers = { "Content-Type": "application/json", "Accept": "image/jpeg", "Authorization": f"Bearer {api_key}" } self.base_url = f"https://{base_url}" def _post(self, url, json=None): r = requests.post(url, headers=self.headers, json=json) r.raise_for_status() return Image.open(BytesIO(r.content)).convert("RGB") def job(self, config): body = {"type": "inference.flux.dev.txt2img.v1", "config": config} try: return self._post(f"{self.base_url}/v2/job", json=body) except Exception as e: raise gr.Error(f"Job failed: {e}") def infer(prompt, seed=42, randomize_seed=False, resolution="1024x1024", guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) width, height = resolution.split("x") image = generative_api.job({ "prompt": prompt, "width": int(width), "height": int(height), "seed": seed, "steps": num_inference_steps, "guidance_scale": guidance_scale }) return image, seed generative_api = APIClient() with open("header.md", "r") as file: header = file.read() examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } .image-container img { max-width: 512px; max-height: 512px; margin: 0 auto; border-radius: 0px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(header) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt" ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False, format="jpeg") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): resolution = gr.Dropdown( label="Resolution", value="1024x1024", choices=[ "1024x1024", "1024x576", "576x1024" ] ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, resolution, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.queue(default_concurrency_limit=10, max_size=12, api_open=False).launch(max_threads=32, show_api=False)